Department of EEE

2.3.1 Student-centric methods such as experiential learning, participative learning and problem-solving methodologies are used for enhancing learning experiences:

Sl no	Detail of participative learning	Count
1	Internship details	54
2	Project	35
	Miniproject	31
	Live-in Lab	31
3	Workshop, Seminar attended	42
4	Paper presented	9
5	E-quiz conducted	20
6	Add on courses:	
	Nasscom Futureskills	288
	IIT Bombay spoken tutorials	344
7	Others	IEEE xtreme-5 teams
		Hackathon- 14 teams-Participated;
		2 teams- winners

Internship details

INTERNSHIP DETAILS 2021-2022

S.No	Student id	Registration No	Student Name	year	sem	Internship	FROM	ТО
1	SEC20EE021	412520105074	R SURYA	II	III	Softrate India	27/03/21	27/09/21
2	SEC20EE068	412520105059	SATHMIKAN I	II	III	Ifortis Worldwide	31/05/2021	16/07/2021
3	SEC20EE023	412520105081	VENKATESHWARAN .	II	III	Ifortis Worldwide	31/05/2021	16/07/2021
4	SEC20EE093	412520105006	AKSHAYA A	II	III	Nanjil Anand Foundation	13/05/2021	13/11/2021
5	SEC20EE024	412520105002	ABINAYA R	II	III	IFORTIS	31/05/21	16/07/2021
6	SEC20EE017	412520105068	SUBIKSA G	II	III	Genik Research Institute	15/5/21	26/6/22
7	SEC20EE046	412520105058	SARVESH G	II	III	Internbug	30/06/2021	15/07/2021
8	SEC20EE023	412520105081	VENKATESHWARAN .	II	III	Internbug	14/06/2021	29/06/2021
9	SEC20EE046	412520105058	SARVESH G	II	III	Aashman Foundation	June 2021	Sep 2021
10	SEC19EE006	412519105088	VASUNDHARA L	III	V	Vecmocon Technologies	15-07-2021	15-12-2021
11	SEC20EE093	412520105006	AKSHAYA A	II	III	Anti Corona Force(NGO)	12/07/2021	12/10/2021
12	SEC19EE038	412519105007	AOUTHITHIYE BARATHWAJ SR Y	III	V	VECMOCON Technologies, Delhi	15/07/2021	15/12/2021
13	SEC19EE080	412519105041	NANDHINI S	III	V	genik	01/07/2021	10/08/2021
14	SEC19EE019	412519105023	HAARIHARAN N C	III	V	VECMOCON Technologies, Chennai	15/07/2021	15/12/2021
15	SEC20EE089	412520105030	KARISH LEELA M	Π	III	Genik Research Institute	22/08/21	22/10/21
16	SEC20EE022	412520105060	SELVAPRIYA V	Π	III	Genik Research Institute	22/08/21	22/10/21
17	SEC20EE017	412520105068	SUBIKSA G	II	III	Genik Research Institute	22/08/21	22/10/21
18	SEC20EE064	412520105009	ARCHANA R	II	III	Genik Research Institute	01/08/2021	21/01/2022
19	SEC19EE028	412519105015	DEVA SARAVANAN S	III	V	uniq	25/08/2021	07/09/2021
20	SEC19EE033	412519105060	SAISUDHA G	III	V	Southern Railways	17/09/2021	04/10/2021
21	SEC19EE025	412519105057	RISHIKA G	III	V	TechnoColabs	20/08/2021	20/09/2021
22	SEC19EE001	412519105008	ARAVINTHAN K	III	V	TVS Training and Services	24-08-2021	31-08-2021
23	SEC19EE049	412519105048	PRATHISH KUMAR U	III	V	Larsen & Toubro	23-08-2021	17-09-2021
24	SEC19EE027	412519105068	SHRIRAM R	III	V	Genik Research Institute	05-08-2021	18-11-2021
25	SEC19EE025	412519105057	RISHIKA G	III	V	Lets grow more	August,2021	September,202
26	SEC19EE019	412519105023	HAARIHARAN N C	III	V	ICF,Chenni	15/09/2021	29/09/2021
27	SEC19EE033	412519105060	SAISUDHA G	III	V	Southern Railways	17/09/2021	04/10/2021
28	SEC19EE038	412519105007	AOUTHITHIYE BARATHWAJ SR Y	III	V	ICF,Chenni	15/09/2021	29/09/2021
29	SEC19EE006	412519105088	VASUNDHARA L	III	V	Southern Railway	17-09-2021	04-10-2021
30	SEC19EE019	412519105023	HAARIHARAN N C	III	V	ICF,Chenni	15/09/2021	29/09/2021

31	SEC19EE042	412519105033	KRISHNAKANTH L	III	V	IP Rings Limited Chennai	13/09/2021	11/10/2021
32	SEC19EE026	412519105066	SHANMUGA PRIYA A	III	V	SRF LIMITED, Chennai	15/09/ 2021	30/09/2021
33	SEC19EE064	412519105006	AKASH A	III	V	IP Rings	13-09-2021	11-10-2021
34	SEC19EE076	412519105055	RIKSHITHA E	III	V	Renault Nissan	16-09-2021	17-11-2021
35	SEC19EE008	412519105016	DHEEPTHA D	III	V	codebind technologies	25/10/2021	29/10/2021
37	SEC19EE040	412519105070	SIVAANII D	III	V	Tech with P	20/10/2020	20/01/2021
36	SEC19EE013	412519105034	KRISHNA PRIYA P	III	V	codebind technologies	25/10/2021	29/10/2021
38	SEC19EE031	412519105065	SATHYA PRIYA J	III	V	CodeBind Technologies	25-10-2021	29-10-2021
39	SEC20EE041	412520105007	AMOSE DAVID A	II	III	CyberHakz	10/12/21	17/12/21
40	SECL21EE05	SECL21EE05	S ABHIJAY GOPAL	II	III	SPACE	27/01/2022	10/02/2022
41	E8EE093	412518105002	ABINANDHAN A	IV	VII	CTS Internship	29.01.2022	
42	E8EE093	412518105002	ABINANDHAN A	IV	VII	National Small Industries Corporation Limited	27.07.2021	02.08.2021
43	E8EE013	412518105011	BRINDA P M	IV	VII	CTS Internship		
44	E8EE012	412518105012	DEEPTHI K	IV	VIII	CGI Internship	05.03.2022	
45	E8EE003	412518105023	HARI HARAN N	IV	VII	Guardian Internship		
46	E8EE046	412518105051	RAGAVENDRA R P	IV	VII	Hexaware Internship		
47	E8EE017	412518105052	RAKSHANIVASINI R S	IV	VII	CTS Internship	14.03.2022	
48	E8EE097	412518105071	SRIHARI S	IV	VII	CTS Internship		
49	SECL19EE07	412518105306	SATHISH R	IV	VII	National Small Industries Corporation Limited	27.07.2021	02.08.2021
50	E8EE050	412518105004	AKSHARA M	IV	VII	CTS internship	3 MONTHS	
51	E8EE006	412518105042	NAVIN S K	IV	VII	Zoho Internship	3 MONTHS	
52	E8EE083	412518105045	NIVETHA K	IV	VII	mu-sigma internship	3 MONTHS	
53	E8EE063	412518105058	SANGAVI T	IV	VII	mu-sigma internship	3 MONTHS	
54	E8EE064	412518105085	VIGNESH K	IV	VII	cts internship	3 MONTHS	

Certificate No PS-APSSDC-PYMC-2489

Pantech e Learning

Skill AP

CERTIFICATE OF PARTICIPATION

NAME Ms.JEYASHRI.R

COLLEGE SRI SAIRAM ENGINEERING COLLEGE

has Successfully Completed 30 Days Master Class on Python Programming

at Pantech e Learning Pvt Ltd, Chennai

From 28.02.2022

To 29.03.2022

M.Malaiyappan Director Pantech e Learning

OPERER Xm

Dr.Ravi Gujjala Chief General Manager (Technical) APSSDC

राष्ट्रीय लघू उद्योग निगम लिमिटेड NATIONAL SMALL INDUSTRIES CORPORATION L एन एस आई सी C (A Govt. of India Enterprise) **NSIC - TECHNICAL SERVICES CENTRE,** Sector B-24, Guindy Industrial Estate, Ekkaduthangal, Chennai - 600 032

S

NSO

HEAD OF T

No.: 164 99

CERTIFICATE

This is to certify that Mr/Ms. ABINANDHAN A. S/o/D/o Shri ARUL student of III year B.Tech/B.E (EEE) Sri Sairam Engineering College, has undergone Virtual Internship Training ELECTRIC VEHICLES on conducted by us for a period of one week from 27.07.2021 to 02.08.2021

Certificate of Internship

Srinidhi Srinivasan

from Department of EEE, Sri Sairam Engineering College has successfully completed Project Internship program during 15th May to 26th June 2021 at Genik Research Institute in

Machine Learning

Deepoboration

Aouthithiye Barathwaj SR Y Instructor & Program Director, MLIP'21

Sai Ganesh CS Mentor, MLIP'21 Director - AI

GMLIP-M000029 Verify the certificate at geniktech.com/IP/ML21M

www.geniktech.com

Project Internship Program Projects carried out in: Advanced Python Tools, Regression Algorithms, Classification Algorithms, Ensemble Learning, Artificial Neural Networks, Convolutional Neural Networks, & Recurrent Neural Networks along with a Capstone Project

एन एस आई सी N S I C NSIC - TECHNICAL SERVICES CORPORATION LIMI NSIC - TECHNICAL SERVICES CENTRE, Sector B-24, Guindy Industrial Estate, Ekkaduthangal, Chennai - 600 032

ध उद्य

No. :

ग निगम लिमिटे

16505

CERTIFICATE

This is to certify that Mr/Ms. **SATHISH R.** S/o/D/o Shri **RANGANATHAN D.** student of IV year B.Tech/B.E (EEE) Sri Sairam Engineering College, has undergone **Virtual Internship Training on ELECTRIC VEHICLES** conducted by us for a period of one week from 27.07.2021 to 02.08.2021

SC NSIC - TSC NSIC

TSC NSIC - TSC NSIC - TSC NSIC - TSC NSIC

HEAD O

TSC NSIC - TSC NSIC - TSC NSIC - TSC NSIC - TSC

NS.

HEAD OF TRAINING

SRF-HR 30th Sep 2021

Completion Letter

1.	Name	: Swetha S
2.	Father Name	: P Saravana Kumar
3.	College	: Sri Sairam Engineering College
4.	Course	: EEE
5.	Internship Period	: 15-Sep-2021 - 30-Sep-2021
6.	Department	: Electrical
7.	Conduct and Character	: Good

Yours faithfully For SRF LIMITED

4-la

K. Kalaiselvan General Manager – HR

SRF LIMITED

Manali Industral Area Manali Channai 600.068, India Tel 91-44-25946000 Fax 91-44-25943072

Regd. Offica: The Galleria: DLF Mayor Vihar, Unit No. 236 & 237. Second Pileor, Mayor Pilace Noda Unik Read, Mayor Vihar Phase I Extr. Dehi - 110 081

CIN No.: L181010L1970PLC005197 Email ID info@srt.com website www.srf.com

Genik Research Institute Δ

(Managed by Genik Group.) Kamarajapuram, Chennai, Tamil Nadu, India, 600073 Industrial AI & Robotics - Research & Development Organization

Ref. no. RDI36

Date: 18/03/2022

TO WHOM IT MAY CONCERN

This is to certify that **Ms. VARSNI RS** (B.E / EEE / III Year) from Sri Sai Ram Engineering College, Chennai, has successfully completed the R&D Internship at our company and worked on the project "IoT Based Fishing and Security System for Watercraft Vessels" during the period from 1st August 2021 till 21st January 2022.

She has been an industrious and a diligent student who has a great penchant towards acquiring advanced and extensive erudition. She indulged in the assignments given with an optimistic attitude and have always contributed cheerfully in the projects and discussions.

We wish her all the best in her future endeavours.

(FOR GENIK RESEARCH INSTITUTE)

Sai Ganesh CS Director - Al

Final year Project

Sri Sairam Engineering College										
Department of EEE										
		1		Project team details	- EEE- 2021-2	2022 academic year				
S.No.	Project ID	Student ID	Register Number	Name of the Batch Member	Section	Project Title	Name of the Project Guide			
		5855003	412518105002		۸					
1			412518105002		A	-				
·			412516105045		<u>A</u>					
	SECEE22PJ01	E8EE003	412518105023	KARTHIKEYAN R	<u>А</u> С		DI.R Aznagumurugan			
2		SECI 19EE01	412518105301	Balaii S	 B	-				
-		E8EE080	412518105022	Gokulapriyan K	<u> </u>		Dr T Porselvi			
	5L0LL221 302	E8EE048	412518105064	SHIVANI GOPIKA K	<u>с</u>		DI.I.I DISCIVI			
3		E8EE024	412518105047	OVIYAR	C					
-	SECEE22P.I03	E8EE058	412518105009	ATCHAYAR	C	Designing of energy efficient motor for electric vehicles	Dr T PORSEI VI			
		E8EE068	412518105019	ENIYAN S	B					
4		F8FF011	412518105025	HARISH M	B					
	SECEE22P.I04	E8EE096	412518105014	DHANESHH S	Δ	Automatic Object and Crack Detecting System in railway	DR B MEENAKSHI			
	0202221 004	E8EE055	412518105041	Muthulakshmi K	C		DIV. D. WEENAKOI			
5		E8EE036	412518105008	P. Ashwini	А	Demand Despanse Fremework for minimizing newer less by				
	SECEE22PJ05	E8EE042	412518105013	Dhanalakshmi K	В	Optimizing DG Parameters	Dr.C.Navanatara			
		E8EE070	412518105031	Kaleeswari, R	С					
6		E8EE063	412518105058	SANGAVI, T	В					
	SECEE22P.106	F8FF017	412518105052	Rakshaniyasini R S	Α	InT Based Blood Glucose Monitoring System	RAJAKUMAR P			
	0202222.000	E8EE050	412518105004	Akshara M	B					
7		E8EE021	412518105021	Gayathri A	С	Demand side Load Management by Priority based load				
	SECEE22PJ07	E8EE083	412518105045	Nivetha K	В	shifting in the power system distributed network	Ms.P.Shanmugapriya			
		E8EE085	412518105048	S.prabhakaran	С		2 . /			
8		E8EE052	412518105035	M.KISHORE	A	Provent and cafety measures of structural demons detection				
	SECEE22PJ08	E8EE092	412518105003	B.AKASH	С	of bridges	Dr.A.SANJEEVI GANDHI			
6		E8EE006	412518105042	Navin SK	В					
9	SECEE22PJ09	E8EE001	412518105059	Saran Sreedhar Vellore	Α	Spacenine- NEMO	Dr. Saswati Kumari Behera			
		E8EE059	412518105046	OOVIYA M	C					
10		E8EE077	412518105089	MANISHA P	С					
	SECEE22PJ10	E8EE082	412518105015 [2]	DHARANIDARAN L [3]	С	Investigation of battery performance in the electric scooter [1]	ANITHA N			
		E8EE037	412518105074	K. Subramaniya shiva	С					
11		E8EE077	412518105077	S Surya Ananth	С					
	SECEE22PJ11	E8EE049	412518105049	Praveen SS	A	Smart System for Electric Vehicle	R. Sivaprasad			
		E8EE013	412518105011	BRINDA P M	A					
12		E8EE004	412518105010	BALASNEKA G B						
	SECEE22P,I12	E8EE021	412518105034	KHUSHI P	A	Arduino	Dr. C. PRIYA			
		F8FE051	412518105030	JEYASHRI R	Δ					
1 1	1	1-0001	.12010100000		/ `	1	1			

13		E8EE035	412518105050	PREETHI S	А]	
	SECEE22PJ13	E8EE014	412518105075	SUJI S	А	Face Recognition based smart security System	HEMALATHA M
		E8EE009	412518105057	SAI SHARON S	А		
14		E8EE010	412518105061	SETHU SABARI T	А	Performance Analysis of interior permanent magnet PLDC	
	SECEE22PJ14	E8EE035	412518105066	SHREENATH MR	В	motor for electric vehicle	L.Kurinjimalar
		E8EE035	412518105062	SHANKAR RAM R	А		,
45		E8EE035	412518105040	MUTHU KRISHNAN M	В		
15		E8EE064	412518105085	VIGNESH K	В		
	SECEE22PJ15	E8EE078	412518105086	VIGNESH K G	В	SMART FARMING USING IOT	SHALINI PRIYA J
		E8EE025	412518105036	Kumaresh R K	А		
16		E8EE076	412518105027	Harish Srivathsan J K	В	Smort Home Energy Motor Manitoring System with aloud data	
	SECEE22PJ16	E8EE061	412518105054	Ranjith S	С	base Connectivity	Malini V
		E8EE034	412518105026	Harish R	С	,	
17		E8EE069	412518105039	Mohanasundaram S	С		
	SECEE22PJ17	E8EE072	412518105083	Vasu S	С	[4]	Mr.Rajasekaran M
		E8EE029	412518105069	SIVASAKTHI S	C		
18		E8EE026	412518105084 [6]	VEDHASRINIDHI.D [7]	C	Analysis of single phase bi directional Electric drive	
	SECEE22PJ18	E8EE067	412518105037 [8]	LOGESH.B [9]	С	vehicle.	Dr B Meenakshi [5]
		E8EE084	41251805070	Sivasree A	В		
19	SECEE22PJ19	E8EE056	412518105053	Raniani D	В	transmission and PV generation	Raikumar k
		E8EE046	412518105051	Ragavendra.R.P	А		
		E8EE039	412518105056	Sabari krishnan.s	С		
20		E8EE023	412518105016	Dharani kumar.P	С		
	SECEE22PJ20	E8EE015	412518105038	MARSHAL A	В	Digital Holographic system based food supply management	Jeeva.c
21		E8EE047	412518105028	Janani R	В		
	SECEE22PJ21	E8EE045	412518105067	Shruthi M	В	Augumented reality based smart resturant	Dr K Prathibanandhi
		E8EE053	412518105032	KARTHIKEYAN B	В		
22		SECL19EE05	412518105302	Chenamuri Venkata Su	А		
	SECEE22PJ22	E8EE091	412518105073	Subash Chandra Bose	С	Industrial environmental monitoring and rectifing system	Ms CHITHRA.V
		E8EE031	412518105029	S.Jawahar	В		
23		E8EE062	412518105079	G Swaminathan	В		
20		E8EE095	412518105088	R VISHNU	А		
	SECEE22PJ23	E8EE094	412518105068	SIRIMELLA ESWAR SAI GAI	В	PH meter calibration and hydroponics	Arulselvam
		E8EE027	412518105087	Vijay Ramanathan N	С		
24		E8EE043	412518105082	Timothy AV	В	Stator water cooling system control using PLC for high	
	SECEE22PJ24	E8EE033	412518105017	Dheepakkaran ES	В	capacity generator	Ms. R.Kothai
		SECL19EE06	412518105307 [10]	SRIRAM L [11]	В	-	
25		E8EE044	412518105007	ARJUN PRASAD P	В	A smart system for bus pass and health inspection in college	
	SECEE22PJ25	E8EE004	412518105072	SUBASH A	С	bus transportation [12]	Dr Suresh
		E8EE060	412518105006	ARIVARASAN N	Α	-	
26		E8EE088	412518105001	ABID MOHAMMED M	А	FREE ENERGY MECHANISM BY PERPUTUAL MOTION USING	
	SECEE22PJ26	SECL19EE07	412518105306 [13]	SATHISH R	Α	DYNAMO MOTOR	Arulselvam
		E8EE012	412518105012	DEEPTHI K	A	4	
27		E8EE057	412518105063	SHARULATHA S	C	loT enabled air Pollution meter with digital dashboard on smart	
	SECEE22PJ27	E8EE065	412518105065	SHIVASHANKARI A.M	С	phone	Hemalatha M
		E8EE066	412518105080	SWETHA K	A		

	1	1			1			1		
28		E8EE079	412518105024	HARINI T M	A					
	SECEE22PJ28	E8EE074	412518105044	NIVEDHA P	A	Monitoring system for water logged urban roads based on IoT	Mohan S	ļ		
		E8EE075	412518105060	SERANGEEVI L	A					
29		E8EE097	412518105071	SRIHARI S	A]				
	SECEE22PJ29	E8EE040	412518105081	TARUN R G	A	Challenges in micro grid Integration	L Kurinjimalar	ļ		
30	SECEE22PJ30	E8EE038	412518105076	Suraj Kumar KB	В	SMART WEARABLE FOR PULMONARY FIBROSIS PATIENT MONITORING WITH OXYGEN SATURATION PREDICTION	SHALINI PRIYA J			
31		SECL19EE02	412518105305	LEENA V	C	Power factor improvement in modified bridgeless landsman				
	SECEE22PJ31	SECL19EE03	412518105304	Kousika G	С	converter Fed EV battery charger	Mr.Rajasekaran M	Mr.Rajasekaran M		

Mini Project

	Sri Sairam Engineering college							
Department of Electrical and Electronics Engineering								
		EE8	611 - Mini Pro	ject				
Batch								
No	Name of the students		Registrati	on number	1	Title of the Project		
1	NANDHINI S,JANANI T,VARSNI RS, VISHNU PRIYA K	412519105041	412519105024	412519105087	412519105093	Bogus vote prevention alarm system		
2	PRIYANGA A,RISHEKA S ,SRINIDHI SRINIVASAN, Rikshitha E	412519105049	412519105056	412519105075	412519105055	Smart Weather and Battery Monitoring System		
3	KRITHIKA B,SIVASANKARI K ,SHREYA R, R.Sindhu priya	412519105035	41251915072	412519105067	412519105069	Simplified reading tool to aid visually impaired		
4	Chandhrasekaran G,KHADAR JILANI N, ABISHEK J, Govind	412519105011	412519105030	412519105003	412519105303	Smart Parking Using IOT		
5	Aouthithiye Barathwaj SR Y ,Haariharan N C, Krishnakanth L ,Tejas Kanna .G	412519105007	412519105023	412519105033	412519105085	Animal Detection and Predictive Ranging System with AI and IoT		
6	Prathish Kumar U ,V Sandeep, PURUSHOTHAMASAI TM,	412519105048	412519105062	412519105050,		Calibration of energy meter		
7	B Sai Siddhaarth ,B Sriram,Rajshekhar	412519105059	412519105077	412519105051		Automation and app development for Mushroom cultivation		
8	Sathya Priya J,Vasundhara L, Saisudha G,Sandra Antony	412519105065	412519105088	412519105060	412519106063	Smart Wear- An IOT Based home automation and health care wearable watch		
9	Dheeptha D,Krishna Priya P Nikariga R	412519105016	412519105034	412519105044		Latching power switch circuit		
10	Lavanya.S,Jarls De Brit.A, Karthikji.G,Navin Chakkravarthi.S M	412519105307	412519105305	412519105306	412519105309	Smart Energy meter		
11	Rishika G,Kavya S, Tamilselvi.M, M Aarthi	412519105057	412519105029	412519105083	412519105001	Testing of maximum Loadability of the System		
12	Sugunesh R,Suwati M G, J R Manasa	412519105079	412519105081	412519105028		IR and WiFi based switches automation		
13	Someshwaran B, Vishnu charan K. K,Jayaprakash V,Sriram A	412519105073	412519105092	412519105025	412519105076	Security Drone		
14	S. Nithish ,Soundra rajan G Sai Ganesh CS	412519105045	412519105074	412519105058		Self-Charging Autonomous Vehicle using Computer Vision and IOT		
15	Swetha S, Shanmuga priya A K, Sivaanii D , Nasreen	412519105082	412519105066	412519105070	412519105042	Smart irrigation		
16	Ebinazer.A, Prasanth D, Mohamed samsudeen.A	412519105301	412519105313	412519105308		Motor Trigger pulse generator circuit		

					1	
17	VIVEK A, JAYENDAR. M, ABISHEK. S	412519105094	412519105026	412519105004		Wireless Charging in Electric Vehicle
	ARAVINTHAN K, ARAVINTHAN K, Chandru					PORTABLE STABILIZED SOUND
18	v,Ranjith M.	412519105009	412519105008	412519105013	412519105053	CONTROL SYSTEM
						Electric Vehicle Fast Charging
						Technology And
19	SIVARAM.V, AKASH .A, NITISH RAO .K	412519105071	412519105006	412519105046		Battery Capacity Need In Indiak
20	Surya Prakash M,Gokul P, Jeevanandham S	412519105501	412519105022	412519105027		BLINK TO SPEAK
21	Manikandan S,Natarajan R, Monish Sharma P	412519105038	412519105043	412519105039		Battery voltage level indicator .
						Ignition system based on insertion and
	Gopalakrishanan R,Rajesh G, Kuralamudhan J A,					verification of driving license
22	Rajesh k	412519105302	412519105312	412519105036	412519105052	using bio metric authentication
						Applications of integrated visual
23	Divakar S, Dinesh K , Shriram R	412519105019	412519105018	412519105068		augmented system in defence
	VIGNESH P, GNANAPRAKASH R,					Hand Gesture Controlled Wheel Chair
24	DEVADATHAN S, V.Kishore Kumar	412519105089	412519105021	412519105014	412519105032	using Arduino
						Design Of A Diagnostic Instrument to
						Observe Food Eating
25	Mullai Krishna M, Mahesh J, Abhishek D P	412519105040	412519105037	412519105002		Project of Humans
26	VIJAYENDRAN V S, SATHEES KUMAR	410510105001	412510105064	412510105000		
26	M, VIGNESH R	412519105091	412519105064	412519105090		Auto power trip during Gas leakage
27	Tanusri.A,Elakiya.I Aishwarya K Suruthi B	412519105084	412519105020	412519105005	412519105080	Automatic Wet Grinder
	CHANDRA SEKARA BHARATHI ,CB RAGU					
28	NAATHAN,RETHICK T	412519105012	412519105010	412519105086		Innovative Street Light
29	Kiran S, R Sakthi Vignesh ,Retesh M	412519105031	412519105061	412519105054		IOT Based home automation
						over voltage and over current alert
30	Srivatson N, Deva Saravanan S, Vairamuthu M	412519105078	412519105015	412519105311		indicator
	Dhilip kumar R, prasanth					
31	,Gowtham,Nithyanandham	412519105017	412519105047	412519105304	412519105310	Automatic Breaking system
						Project Coordinators
						Dr. Saswathi kumari behera
						Mr.C.Jeeva

Live in Lab Project

	1	LIVE-In LAB 2021	-22-EEE	LIVE-In LAB 2021-22-EEE								
Register Number	Name of the Student	BATCH ID	TITLE	GUIDE								
412520105013	BOOBALAN M											
412520105015	DARUNKUMAR G											
412520105021	GOKUL M	SEC24EETE318	Wireless Power Transmission	Mr.P.Rajakumar								
412520105012	BALASAKTHISHWARAN M											
412520105019	GANDHI S											
412520105022	HARI PRADOSH S M	SEC24EETE319	Mobile phone jammer	Mr.S.Mohan								
412520105031	KARTHICK A											
412520105071	SUNDARA NARAYANAN A		Artificial Assistant devices for visually									
412520105079	THARUNKUMAR P	SEC24EETE320	impaired person	Mr.D.Arulselvam								
412520105029	KAMALAKANNAN B											
412520105035	KRISHNA KUMAR P		Data Transmission Using Li-Fi System									
412520105038	MAHENDRA VARMA SALIYAN J T	SEC24EETE321		Ms.L.Kurinjimalar								
412520105034	KAVIPRASAD P											
412520105072	SURIYA M											
412520105085	VISVAK S	SEC24EETE322	accident avoidance with smart helmet	DR.C.NAYANATARA								
412520105064	SIDHARTH K.A											
412520105059	SATHMIKAN I											
412520105050	PRADEESH T	SEC24EETE323	HOOTCHFLAPPER	Ms.N.Anitha								
412520105009	ARCHANA R		Automatic Room Lights using Arduino									
412520105001	ABHINAYA K		and PIR Sensor									
412520105006	AKSHAYA A	SEC24EETE324		Dr C Priya								
412520105065	SOUMYA M		LANE DETECTION USING OPEN CV									
412520105014	DAKSHINA R	SEC24EETE325	AND IMAGE PROCESSING	Dr.K.Suresh								
412520105062	SHRIKANTH.S											
412520105088	YOHARAJ.A											
412520105045	PARTHIBAN.D		power generation through speed									
412520105055	Sanjay	SEC24EETE326	breakers by rack and pinion mechanism	Ms.Chithra.V								
412520105003	ABINAYA.V.R											
412520105004	AISHWARYA.S											
412520105025	JANANI.J	SEC24EETE327	Pipeline Water Monitoring System	Dr.A.Sanjeevi Gandhi								

412520105016	DHANYA.K		THERMOELECTRIC COOLING AND	
2021021162	Pooja Mohan Bengeri	SEC24EETE328	HEATING	P.SHANMUGAPRIYA
412520105026	JANANI S			
412520105053	ROSHINI S	-	SMART IRRIGATION SYSTEM	
412520105044	NISHANTHINI R	SEC24EETE329	USING ARDUINO UNO	Dr.T.Porselvi
412520105042	Nafeeza Begum		Eve movement based electronic	
412520205086	Viveka	-	wheelchair for physically challenged	
412520105077	Teena	SEC24EETE330	persons	Mr.K.Rajkumar
412520105080	VAISHNAV M			
412520105081	VENKATESHWARAN A	-	GSM based power meter billing and	
412520105084	VIKAS S	SEC24EETE331	load control	Ms.V.Malini
412520105051	PRIYADARSHAN P			
412520105052	ROHINTH P	-		
412520105058	SARVESH G	SEC24EETE332	Traffic clearance for emergency vehicle	Mr.M.Rajasekaran
2021021205	S.Karthik Sambath			
2021021209	M.Arun Raja		Cleaning of solar panel using automation	
2021021199	S.Abhijay Gopal	SEC24EETE333	system	Mr.R.Sivaprasad
2021021373	M.Dharanish			
412520105010	Arish.V		Fire Alarm detection system USING	
2021021337	N.G.Saiaravinth	SEC24EETE334	IOT	Dr.B.Meenakshi
2021021261	S.Sachinkumar			
2021021008	K.Arunkumar		immediate recovery after accident	
2021021283	N.Anushraj	SEC24EETE335		DR.R.Azhagumurugan
412520105030	Karish Leela M			
412520105060	Selvapriya V	SEC24EETE336	D GESTURE CONTROLLED WHEELCI	Dr.K.Prathibanandhi
412520105068	Subiksa G			
412520105017	Dhivyashri M	SEC24EETE337	Solar power bank with wireless charging	Dr C Priya
412520105002	ABINAYA.R			
412520105063	SHRIRANJANI.J	SEC24EETE338	mart Wearable women Assault Prevention	R Sivaprasad
412520105008	Amsavarthini.R			
412520105028	kalaivani.K			

412520105046	Paulina.J	SEC24EETE339	smart blind stick with image recognition	Dr.K.Suresh
412520105073	N A SURIYAN			
412520105040	MUKESHWARAN			
	MURALIDHARAN	SEC24EETE340	power air purifier with high voltage gene	Dr.A.Sanjeevi Gandhi
412520105023	JAI SURYA KK			
412520105037	MAGESH V			
412520105020	GOKUL J	SEC24EETE341	LOW COST SMART ENERGY METER	Mr.Rajasekaran
412520105067	srimathi k			
412520105024	janani E			
412520105047	pavithra p	SEC24EETE342	Electricity generation speed breaker	Mr.P.Rajakumar
2021021275	GUNESHWAR M		LOCATION MONITORING BY	
412520105089	YOKESWARAN S		USING GPS AND BOARD ALERT	
412520105090	YUVARAJ	SEC24EETE343	SYSTEM	Mr.K RAJKUMAR
412520105033	Kavinesh			
412520105036	Madhavan			
412520105027	Jeeva Prasad R	SEC24EETE344	ECTRIC BASED SHOE ENERGY GENE	Mr.P.Rajakumar
412520105078	D.Tharun			
412520105043	BM Naveen			
412520105074	R Surya	SEC24EETE345	Swift Scrambler	Ms.Chithra.V
412520105056	Santhosh Kumar M			
412520105076	Swaminathan			
-	Mohamed athile. a	SEC24EETE346	PIR Motion capture security system	Ms. V. Malini
412520105032	Karthikeyan M			
412520105018	Evansingh M			
412520105007	Amosedavid A			
412520105039	Mohammed Azeem affan A	SEC24EETE47	Lifi	Dr.Saswathi kumari behera
412520105057	saranraj A.K			
412520105048	Peroli Rikthish B			
412520105049	Prabakaran.M	SEC24EETE348	Industrial Automation using IOT	Dr.T.Porselvi
412520105075	Surya Vigneshwar C			
412520105070	Sudharsan M			

412520105083	Vijay S	SEC24EETE349	Driver drowsiness detector	Hemalatha.M
2021021095	MANIKANDAN S			
2021021097	VAITHEESWARAN M			
2021021092	PADMANABHAN N D	SEC24EETE350	L NAVIGATION FOR VISUALLY IMPA	J SHALINI PRIYA
412520105066	SRI ARI PRIYA A			
412520105054	SANDHIYA V			
412520105005	AJITHA SRI R	SEC24EETE351	Highway Wind Turbines	Kothai R
2021021172	Vishnu s			
2021021319	Rawin Raj			
2021021374	Saran Prakash	SEC24EETE352	automatic rechargeable e-bike	Dr.R.Azhagumurugan

Workshop, Seminar attended

Workshop/ Seminar attended:

S.N o	STUDENT NAME	EVENT	AWARDS/PRIZE	VENUE	DATE
1	ABHIJAY GOPAL S	POWER BI	COMPLETION CERTIFICATE	LUDIFU	6.03.2022
2	JANANI.J	IEEE CAS Bangalore Chapter Webinar	Participation Certificate	BIT Bengaluru	31.01.202 2
3	VIVEK A	Arduino training - IIT Bombay spoken tutorial	Completion Certificate	ONLINE	30.08.202 1
4	ABHIJAY GOPAL S	DEEP LEARNING FOR MULTIMEDIA SIGNAL PROCESSING	COMPLETION CERTIFICATE	IEEE SCET SB	3.03.2022 TO 5.03.2022
5	JANANI.J	CISCO - Introduction To Cybersecurity	Participation Certificate	Cisco Networking Academy	29.06.202 1
6	JANANI.J	CISCO - CybersecurityEssentials	Participation Certificate	Cisco Networking Academy	29.06.202 1
7	ABHIJAY GOPAL S	NEURAL NETWORKS USING PYTHON	COMPLETION CERTIFICATE	NATIONAL INSTITUTE OF KARNATAK A	28.08.202 1 TO 29.08.202 1
8	ABHIJAY GOPAL S	COMMITTEE KEYS TO SUCCESS IEEE FELLOW	COMPLETION CERTIFICATE	IEEE	27.03.202 2
9	KARTHIKJI	Course Completion	Participation Certificate	ONLINE(EN ERGY SWARAJ FOUNDATIO N)	26.07.202 0
10	ABHIJAY GOPAL S	CHARACTER DRAWING COURSE	COMPLETION CERTIFICATE	UDEMY	26.02.202 1
11	MAGESH V	Python and machine learning bootcamp	Completion certificate	Online	25.7.2021
12	ABHIJAY GOPAL S	DATA PROTECTION REGULATION FOR EVENTS	COMPLETION CERTIFICATE	IEEE	25.03.202 2

S.N o	STUDENT NAME	EVENT	AWARDS/PRIZE	VENUE	DATE
13	ABHIJAY GOPAL S	ELECTRIC VEHICLE BATTERY MANAGEMENT SYSTEM	COMPLETION CERTIFICATE	SKILL LYNC	23.01.202 2
14	MAGESH V	Introduction to 4.0 technologies	Participation Certificate	Online	22.01.202 2
15	AISHWARYA S	Python basic for Data Science(edX)	completion certificate	online	19.7.21
16	ABHIJAY GOPAL S	PHOTOGRAPHY COURSE	COMPLETION CERTIFICATE	CURSA	18.01.202 2
17	KARTHICK A	Geospatial Technology for Archaeological Studies	PARTICIPATION	INDIAN INSTITUTE OF REMOTE SENSING	17-05- 2021 to 21-05- 2021
18	ABHIJAY GOPAL S	VLSI SIGNAL PROCESSING	COMPLETION CERTIFICATE	MEPCO	17.9.21- 18.9.2021
19	VIVEK A	Course Completion	Completion Certificate	ONLINE(Cou rera)	15.05.202 1 to 26.06.202 1
20	VIVEK A	Course Completion	Completion Certificate	ONLINE (CICCO)	15.04.202 1
21	VIVEK A	Course Completion	Completion Certificate	ONLINE (CISCO)	15.04,202 1
22	ABHIJAY GOPAL S	HYBRID ELECTRIC VEHICLE	COMPLETION CERTIFICATE	SKYY RIDER	15.02.202 2 - 16.02.202 2
23	ABHIJAY GOPAL S	ROBOTIC PROCESS AUTOMATION	COMPLETION CERTIFICATE	SKILLUP	15.01.202 2
24	AISHWARYA S	Cisco-Introduction to lot	Participation certificate	Cisco Networking Academy	14.6.21
25	ABHIJAY GOPAL S	Pcb Designing (Value added course)	COMPLETION CERTIFICATE	SRI SAIRAM ENGINEERI	14.12.202 1 -

S.N o	STUDENT NAME	EVENT	AWARDS/PRIZE	VENUE	DATE
				NG COLLEGE	16.12.202 2
26	JANANI.J	Pcb Designing (Value added course)	Participation Certificate	Sri Sairam engineering college	14.12.202 1 - 16.12.202 1
27	ABHIJAY GOPAL S	NUT AND BOLT ASSEMBLY USING CATIA V5	COMPLETION CERTIFICATE	SKYY RIDER	12.02.202 2
28	ABHIJAY GOPAL S	BUILD AI OBJECT DETECTION ENGINE	COMPLETION CERTIFICATE	OPENWEAV ER	11.03.202 2
29	KARTHICK A	Arduino Training	PARTICIPATION	IIT BOMBAY	10/1/2022
30	AISHWARYA S	Arduino training - IIT Bombay spoken tutorial	completion certificate	online	10.1.22
31	CHANDHRASEKHARA N.G	Microsoft Certification Program	Participation Certificate	Knowledge Solutions India	10.02.202 2
32	JANANI.J	IIT Bombay Spoken Tutorial - Arduino Training	Completion Certificate	Online	10.01.202 2
33	JANANI E	Arduino Training	Completion certificate	Online	10.01.202 2
34	GOKUL J	Arduino Training	Completion certificate	Online	10.01.202 2
35	DAKSHINA R	Arduino training	Completion certificate	Online	10.01.202 2
36	MAGESH V	Arduino training	Completion certificate	Online	10.01.202 2
37	Srimathi k	Arduino Training	Completion certificate	online	10.01.202 1
38	ABHIJAY GOPAL S	MATHEMATICAL OPTIMIZATION AND ITS APPLICATION	COMPLETION CERTIFICATE	SKILL LYNC	09.01.202 2

S.N o	STUDENT NAME	EVENT	AWARDS/PRIZE	VENUE	DATE
39	KARTHICK A	Geo-informatics for Biodiversity Conservation Planning	PARTICIPATION	INDIAN INSTITUTE OF REMOTE SENSING	06-12- 2021 to 17-12- 2021
40	KARTHICK A	Machine learning to Deep Learning	PARTICIPATION	INDIAN INSTITUTE OF REMOTE SENSING	05-07- 2021 to 09-07- 2021
41	VIVEK A	Course Completion	Completion Certificate	ONLINE (CICCO)	05.05.202 1
42	ABHIJAY GOPAL S	HANDWRITTEN DIGITS RECONGNITION USING ML	COMPLETION CERTIFICATE	IEEE SEC	05.03.202 2 - 06.03.202 2

Cisco Networking Academy

Introduction to Cybersecurity

For completing the Cisco Networking Academy® Introduction to Cybersecurity course, and demonstrating the ability to explain the following:

- · Global implications of cyber threats
- · Ways in which networks are vulnerable to attack
- · Impact of cyber-attacks on industries

- · Cisco's approach to threat detection and defense
- · Why cybersecurity is a growing profession
- · Opportunities available for pursuing network security certifications

Janani Jayaraj		
Student		
NASSCOM FutureSkills		
Academy Name		
India	29 Jun 2021	
Location	Date	

Laura Juintana_ Laura Quintana VP & General Manager, Cisco Networking Academy

has actively participated in the IEEE International Webinar series " SHE LEADS' -Empowering Women Together" on "MY IEEE JOURNEY" presented by Dr.S.Brindha, organized under IEEE WIE AG along with IEEE Student Branch Chapter of St. Joseph's College of Engineering, Chennai, India on 27.01.2022

Mr.SREEKANTH M.E., (Ph.D) SBC COUNSELLOR

8 .K. huy Dr.JAYARAMA PRADEEP M.E., Ph.D.

SL033

अंतरिक्ष विभाग /DEPARTMENT OF SPACE भारत सरकार/GOVERNMENT OF INDIA भारतीय अंतरिक्ष अनुसंधान संगठन /INDIAN SPACE RESEARCH ORGANISATION भारतीय सुदूर संवेदन संस्थान, देहरादून / INDIAN INSTITUTE OF REMOTE SENSING, DEHRADUN

नामांकन सं. / Enrolment No. : 202182987728

CERTIFICATE OF PARTICIPATION IN ONLINE COURSE

यह प्रमाणपत्र श्री कार्तिक ए को "मशीन लर्निंग से डीप लर्निंग तक : सुदूर संवेदन डेटा वर्गीकरण की एक यात्रा "

मे ऑनलाईन पाठचकम में भाग लेने पर प्रदान किया जाता है।

इस ऑनलाइन पाठचक्रम का आयोजन 05 जुलाई, 2021 से 09 जुलाई, 2021 (कुल पाठचक्रम की अवधि = 13 घंटे 30 मिनट) के दौरान किया गया ।

(संबन्धित आई.आई.आर.एस नोडल केंद्र- श्री साईराम इंजीनियरिंग कॉलेज)

THIS CERTIFICATE IS

AWARDED TO

MR. KARTHICK A

ON HAVING PARTICIPATED IN THE ONLINE COURSE ON

"Machine learning to Deep Learning: A journey for remote sensing data classification"

THIS ONLINE COURSE WAS CONDUCTED DURING 05-07-2021 to 09-07-2021 (Total course duration was = 13 hours

and 30 minutes).

(Concerned IIRS Nodal Centre- SRI SAIRAM ENGINEERING COLLEGE)

Date: 19-07-2021 Place: Dehradun समन्वयक, विश्वविद्यालय/संस्थान Coordinator, University/ Institution

FOR Elizif

निदेशक/ Director आई.आई.आर.एस, देहरादून/ IIRS, Dehradun

UID- 43f8e04faffe14b9245a131cc419ece5 .This Certificate can be validated using URL- https://certificate.iirs.gov.in

CERTIFICATE OF COMPLETION

SHAPEAI

This is Presented to

for completing 7-day Python & Machine Learning bootcamp with ShapeAl

Sri SAI RAM ENGINEERING COLLEGE, CHENNAI – 44. DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

Paper Presented During 2021-2022

No	Title of the Paper	Name of Author	Title of journal with	Month and
			ISSN/DOI Volume	Year of
			number/Page Number	publication
1.	PV System Based	T. Porselvi ; K	IEEE Conference, 2021	October
	Induction Motor With	Krithika ; CS Sai	2nd Global Conference for	2021
	Landsman Converter	Ganesh	Advancement in	
	Using IFOC Controller		Technology (GCAT), DOI:	
			10.1109/GCAT52182.2021.	
			9587724	
2.	Screw Propelled	L. Kurinjimalar,	2021 4th International	Dec
	Autonomous Amphibian	N. Anitha, V.	Conference on Computing	2021
	Waste Collector,	Malini, T. N.	and Communications	
		Hariprasad and S.	Technologies (ICCCT),	
		K. Sundaram, ""	2021, pp. 391-395, doi:	
			10.1109/ICCCT53315.2021	
			.9711886.	
3.			Journal of Physics	
			Conference Series, 2021,	
			1979, ,International	
			Conference on Recent	
			Trends in Computing	
		J.Harinarayanan,	(ICRTCE-2021)	
	Power Generation	Chindrupu	20-22 May	
	using Hybrid Energy	Anusha, Mithra	2021, https://iopscience.iop.	
	System for Domestic	Ruba Shree. R,	org/article/10.1088/1742-	August
	Purpos	Sheryl .M	6596/1979/1/012051.	2021
4.			Journal of Physics:	
			Conference Series 1979	
			(2021) 012062,	
			International Conference on	
			Recent Trends in	
			Computing (ICRTCE-2021)	
	IoT Based Energy	M Rajasekaran P	20-22 May	
	System in A Facts of	SRINITHI	2021, https://iopscience.iop.	
	Principle Intrusion on	SANJANA , K V	org/article/10.1088/1742-	August
	Power Administration	SAADURYA	6596/1979/1/012062	2021

5.			Journal of Physics:	
			Conference Series, Volume	
			1979, International	
			Conference on Recent	
			Trends in Computing	
			(ICRTCE-2021) 20-22 May	
		K Rajkumar1, K	2021, Maharashtra,	
	Walk Assistance for	Theiaswini2. S	India.https://iopscience.jop.	
	Outwardly Challenged	Subarna3. P	org/article/10.1088/1742-	August
	People	Yuvashri4	6596/1979/1/012065	2021
6.			Journal of Physics:	
			Conference Series, Volume	
			1979. International	
			Conference on Recent	
			Trends in Computing	
			(ICRTCE-2021) 20-22 May	
			2021, Maharashtra,	
	Automation of	K RAJKUMAR,	India, https://iopscience.iop.	
	Sustainable Industrial	K THEJASWINI	org/article/10.1088/1742-	August
	Machine using PLC	, P YUVASHRI	6596/1979/1/012049/meta	2021
7.	PV Based Multilevel		2022 International	2022
	Inverter with 15 Levels	IFOCPorselvi T;	Conference on	
	using POD Control	Praveena D;	Communication,	
	Method	Shalini Priya J.;	Computing and Internet of	
		Meenakshi B ·	Things (IC3IoT), 2022, pp.	
		Thennarasu S	1-4, doi:	
			10.1109/IC3IOT53935.202	
			2.9767729.	
8.	Designing and	B.Meenakshi;	2022 International	10-11
	commissioning of Heat	R. Sivaprasad;	Conference on	March
	Pumps for Hybrid	T Porselvi ;	Communication,	2023
	Heating and Cleaning of	V Sunandha ;	Computing and Internet of	
	Coaching Equipment	T Janani	Things (IC3IoT), 2022, pp.	
	using Solar Panels		01-05, doi:	
			10.1109/IC3IOT53935.202	

9.	Smart Sprinkler	V. Chithra,	2022 International	10-11
	System Using	К.	Conference on	March
	Raspberry Pi	Prathibanandhi	Communication,	2022
		Jayashri R,	Computing and Internet of	
		Dheepashri R,	Things (IC3IoT), 2022, pp.	
		C. Priya	1-5, doi:	
			10.1109/IC3IOT53935.202	
			2.9767981.	

https://ieeexplore.ieee.org/document/9767901

5/16/22, 3:39 PM Designing and Commisioning of Heat Pumps for Hybrid Heating and Cleaning of Coaching Equipments Using Solar Panels | IEEE... methods, (1) electric heaters (2) using diesel run boilers. This consumes heavy Figures power and ultimately increases the electricity tariff. India has abundance of References solar energy which can be used to power the heaters employed in cleaning purpose. This is completely an on-grid installation of the solar panels. Firstly, all Keywords the electric heaters and the diesel run boiler must be replaced with equivalent heat pumps. These heat pumps are highly efficient in a way that it not only More Like This replaces the electric heaters and the boilers but also replaces the Air conditioners which are used in the nearby rooms thus keeping the room cool at one end and heating the water on the other side. After replacing all the heaters and boilers with the heat pump the heat pump must be provided with a grid tied solar supply. Since it is grid tied the additional generated power is supplied to the grid thus making money. The commissioning of the above process is done and the efficiency of the above system is calculated. Return on savings, carbon footprint of the proposed system is also calculated and the comparison of existing system and the proposed system is made. Area required for installing solar panels is also made.

> Published in: 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT)

Date of Conference: 10-11 March 2022	DOI: 10.1109/IC3IOT53935.2022.9767901
Date Added to IEEE Xplore: 12 May	Publisher: IEEE
	Conference Location: Chennai, India

ISBN Information:

Contents

I. Introduction

Everyone depend on electrical power to light up the world. Irrespective of the pollution from the conventional energy sources our world consumes electrical energy abundantly. The demand for energy is always high. To meet the demands and to protect the earth consumers from layman to industrialist choose or prefer non- conventional energy. India has the THIRD largest railway network in the world with a total of 68155km(as per2019) and Sign in to Continue Reading 64% of all the broad gauge is electrified with 250KV and 50Hz (as per 2020) out of which 5081km covers the southern railways. In such a way "Perambur Carriage And Wagon Works" Southern Railways Has Taken Many Initiatives To Go Green. One such new initiatives is "Designing And Commissioning Of Heat Pumps For Hybrid Heating And Cleaning Of Coaching Equipment Using Solar Panels".

Authors	~
Figures	~
References	~
Keywords	~

5/16/22, 3:39 PM	Designing	and Commisioning of Heat Pumps	s for Hybrid Heating and Cleaning of C	oaching Equipments Using Solar F	anels IEEE.
IEEE Personal	Account	Purchase Details	Profile Information	Need Help?	Follow
CHANGE USERNAME/P/	ASSWORD	PAYMENT OPTIONS VIEW PURCHASED DOCUMENTS	COMMUNICATIONS PREFERENCES PROFESSION AND EDUCATION	US & CANADA: +1 800 678 4333 WORLDWIDE: +1 732 981 0060	f in ¥
			TECHNICAL INTERESTS	CONTACT & SUPPORT	
Privacy & Optin A not-for-profit of humanity. © Copyright 202	g Out of Cookie organization, IE 22 IEEE - All rig	es EE is the world's largest technical hts reserved.	professional organization dedicated to	advancing technology for the ben	efit of
IEEE Account		Purchase Details	Profile Information	Need Help?	
» Change Userna	me/Password	» Payment Options	» Communications Preferences	» US & Canada: +1 800 678	4333
» Update Address	;	» Order History	» Profession and Education	» Worldwide: +1 732 981 006	30
		» View Purchased Documents	» Technical Interests	» Contact & Support	

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2022 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

PAPER • OPEN ACCESS

Power Generation using Hybrid Energy System for **Domestic Purpose**

To cite this article: J. Harinarayanan et al 2021 J. Phys.: Conf. Ser. 1979 012051

View the article online for updates and enhancements.

You may also like

- Theoretical modeling and experimental study of dielectric loss of the multi-pushpull mode magnetoelectric laminate composites Bingbing Xu, Jiashuai Ma, Cong Fang et

al.

- Theoretical and experimental analysis of a piezoelectric plate connected to a negative capacitance at MHz frequencies S A Mansoura, P Benard, B Morvan et al.
- A Survey on the Usage of Biomass Wastes from Palm Oil Mills on Sustainable Development of Oil Palm Plantations in <u>Sarawak</u> K Y Phang and S W Lau

This content was downloaded from IP address 61.12.45.66 on 26/03/2022 at 07:37

Power Generation using Hybrid Energy System for Domestic Purpose

J.Harinarayanan¹, Chindrupu Anusha², Mithra Ruba Shree. R³, Sheryl .M⁴

1,2,3,4 Department of Electrical and Electronics, Sri Sai Ram Engineering College West Tambaram, Chennai, Tamilnadu, India

hari.eee@sairam.edu.in,anua1635@gmail.com,mithrarubashree0000@gmail.com,m.jessy7700@gmail.com

ABSTRACT: We all are aware that the world is precisely running towards a quest for a substitute energy source. Till today, the maximum power requirement is met with the help of fossil fuels. Anyways the estimates which were made recently have predicted that the usage of the fossil fuels like oil and coal might last only till 2030, and later we will have to switch over to the usage of more efficient sources and emerging technologies. According to current situation the further usage of oil and coal will be replenished and whole world will need to foster for renewable energy source which can satisfy the growing needs of the future generation. For the past few years solar and wind energy have already been trapped and are widely accepted as an alternative source of energy. But in this paper we have planned to concatenate the three outcomes i.e. heat, pressure and sound. Most of the times these three energies are considered as unwanted source of energy and they go unnoticed .With the help of Peltier module, Piezoelectric transducer and sound absorption unit the energies like heat, pressure and noise can be converted into electrical energy respectively. Piezoelectric plate transducer is capable of producing energy using the pressure put on the piezo electric plate. In this paper a footstep piezoelectric plate is used easy to incorporate and even effect cost wise. Peltier module is a thermoelectric device which has the capability of converting the thermal/heat energy into electricity. It primarily works based on the principle of Seeback effect. This device is built using 2 different semiconductor material like p-type and n-type. As the heat emerges and spreads through the material ,charge carriers begin to cold side from hot side. The resultant voltage is proportional to the difference in temperature between the layers of the device. As long as there is a difference in temperature the material keeps generating the potential difference. The voltage produced by the entire Peltier module is function of time and the temperature difference. The voltage varies with the change in temperature gradient and time . The sound absorption unit uses sound as an input for producing electric energy, because lot of sound is wasted in our surrounding where in it can used as a source of energy. By using these nonconventional type of energy resources, the generation of power can be achieved with a minimal cost and it will also pave a way to the conservation of the conventional energy source for future needs. This energy thus generated is boosted and stabilized using a DC-DC chopper and later utilized to operate a DC load.

1.Introduction

Responsible utilization of energy resources is the need of the hour. It is highly essential to prefer which source of energy should be used. The considerations like efficiency, cost, stability and cleanliness must be taken into account. It is a bitter fact that nowadays most of the industries are utilizing fossil fuel for power generation. Although the usage of fossil fuel is effective but on a long run they turn into disadvantage. So it is necessary to opt for an alternative energy source. We have planned to use the energies like heat, pressure and sound to generate electricity. In the surrounding there are various sources of sound which are not noticed. Maximum of them is the noise that is produced in industries, public area, etc. An alternative energy source has become the need of the hour in order to meet the rapidly increasing power requirement The renewable sources of energy such as wind energy and solar energy have been tapped and incorporated as a hybrid system and it has been widely implemented as an alternative for fossil fuels. The sound energy is one of the abundant sources of energy. This energy which is ignored can be recycled and converted into electricity source. The heat energy harvested from different heat sources has the capability to generate different amount of voltages. The pressure or the vibration that is applied to the transducer can

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd

doi:10.1088/1742-6596/1979/1/012051

be converted into Electricity. The electricity which is generated from these three sources is trapped and is boosted. This stored electricity is used to operate electric loads.

2. Literature Survey

Random sound energy can be changed over into electrical energy utilizing piezoelectric transducer. The created electric energy capacitors is enhanced through circuits like voltage multiplier. Sound energy cane be detected using different sorts of sound sensors. Here we are fundamentally focusing on creating the electric power for our electronic contraptions from sound energy. We have dissected the work done by various authors in this field and added our work to it.[1]entitled that a moderately less investigated wellspring of environmentally friendly power energy is suggested . Arbitrary sound which is found around is considered as wellspring. A viable method for delivering usable electric power from accessible irregular sound energy is displayed here. Piezoelectric transducers are utilized for transformation of sound energy to electric energy. Here, the created electrical energy from different piezoelectric transducers is put away in various super capacitors which are later processed and enhanced. The final electric power generated is used to charge a battery-powered DC battery for storing purpose. A little 9 volt DC battery was observed to be completely energized inside thirty minutes from completely released stage utilizing medium sound source through the proposed transformation unit. [2] Enumerate the work done on the change systems and philosophies of changing over sound energy to its electrical partner. It centers around the attainability and the ground zero use of the equivalent. The forecast of things to come advancement of these sorts of wellsprings of energy is underscored other than generally referred to ones, for example, sun based energy, biogas, wind energy, etc. So one can suppose we had the option to change over the sound energy to power then we can charge our cell phone just by conversing with our companions on portable itself.

3. Proposed System

There are various sources of sound that are not noticed. Maximum sound is produced from industries, public area ,etc., The piezoelectric transducer converts sound waves created due to noise pollution into energy .Hence it is demonstrated that sound energy can be considered as an alternative energy source. The key element Peltier module has the capability to convert heat energy to electrical energy. The peltier module is constructed using 2 different semiconducting materials like p-type and n-type. It works according to the concept of Seebeck effect, where electricity is generated using the temperature difference around it. Piezoelectric material in general has the capability of producing an electric energy using the pressure applied on it. Whenever a piezoelectric substance is made to experience a mechanical pressure, the electric charges begin to displace which results in voltage generation. Piezoelectric Sensor works based on the piezoelectric effect where all the pressure or mechanical energy that is being applied on it is converted into electric energy signals.

4. Block Diagram

In our proposed system, the power generation from two sources like sound and heat in which in the domestic appliances were planned to operate with the power generated from it. The figure shows the various block in which our proposed system was implemented for energy generation from various sources.

012051 doi:10.1088/1742-6596/1979/1/012051

Figure.2 BlockDiagram

4.1 Thermoelectric Transducer :

The thermoelectric peltier generator creates a temperature differential on each side . One side of the module becomes hot and the other side remains cold. This works according to the principle of Seebeck effect . The heat / thermal energy is converted into potential difference. This voltage that is generated drives the electric current and produces useful power at the load. This thermoelectric transducer has many applications in refrigeration, heating , cooling, thermal management , etc..

4.2 Piezoelectric Transducer

The piezoelectric transducer is capable of converting the pressure / force applied on it to electrical energy. Here the source of force can be weight of a person stepping over the foot step piezo plate, or weight of a vehicle. The electric energy developed is not constant. Piezoelectric transducers are always employed in measuring shock, vibrations, touch and flex motions.

4.3 Arduino UNO

It is developed by Arduino.cc . The word ''Uno'' refers to one . This board accommodate with set of digital input and output pins, that will be interface to numerous enlargement board and different circuit. It's hopped up by external nine potential battery or by USB cable .It is the kind of Arduino Nano. The primary series of Uno board is Arduino Uno.While the Uno communicates the first STK500 protocol, it is completely different from all preceding boards that doesn't used the FTDI USB to operate on serial driver chip . Meanwhile it use the AT Mega16U2 operated as USB to serial device.

4.4 LCD Display

It is a flat panel display ,in which liquid crystal used in its primary operation.LEDs are used in large number for consumers and businesses, which is commonly found in smart phone, television, computer monitor ,and instrumental panels .The two necessary liquid phases are nematic and smectic . In which the crystal is in nematic phases, the liquid crystals are be like a liquid, their molecule mix past one another and can move around, but they all point in the same path. They are bit like a matchbox, even though you shake them or move them but they always keep pointing the same way .If we cool liquid crystals ,the shift over to smectic phase . All the molecules flow into layer that slide past one another easily. The molecules present in the layers can flow within it, but they are able to move or flow in other layers.

4.5 Peltier module

It is a thermoelectric device which works based on a Seebeck effect, which converts the temperature difference (thermal energy) to electrical energy . The peltier module operates like a heat engine. Thermoelectric material generates electricity directly from the heat by transforming the thermal temperature difference to potential difference. The peltier device has a high electrical conductivity (σ) and low thermal conductivity (κ). Whenever the thermal conductivity is low , even one side becomes hot , the other side remains cold . Hence large voltage is generated when there exists a temperature gradient.

4.6 DC-DC booster

A DC-DC device is a mechanical device that converts electrical energy from one voltage level to other. It is an electrical power device. Power level varies from very low to an extreme high. DC-DC Converter area unit utilize in transportable electronic device like cellular device, computers and laptop that area unit furnished power from primarily batteries. Some exception embrace, high efficiency, light emitting diode power source , that area unit a sort of Dc-Dc device that regulates the present through the LEDs and straight forward charge pumps that double or triple the output voltage, it maximize the energy for electrical phenomenon and for wind turbines area unit known as power optimizer.

4.7 Sound Absorption Unit

Sound absorption unit is the live the quantity of energy off from the wave because the wave passes through the given thickness of fabric .Sound absorption means to the method by that a cloth, structure absorbs the sound energy once sound wave are unit encountered once. The energy re-worked into heat .Once sound from loud speaker system collides with the wall of a spaces, there's is a mirrored image of the sound energy , where a portion of it is distributed into the air as pressure differential, the sound energy travels from fabrics. Deformation leads to mechanical losses by the conversion of portion of the sound into heat energy. Size and form determines the sound wave's behavior when it moves with it's wave length, which leads to wave phenomenon and optical phenomenon.

4.8 Power Supply

The board which we are using were operated with an external power supply from 6 V to 20 V. If it supplied with an input less than 7V, then the 5V pin may supply less than 5V, because of which the

International Conference on Recent Trends in C	omputing (ICRTCE-202	1) IOP Publis	shing
Journal of Physics: Conference Series	1979 (2021) 012051	doi:10.1088/1742-6596/1979/1/01	2051

board may be incline to unstable and also if using more than 12V, the voltage regulator may get overheated and board may get damaged .Hence the optimal operating range is from 7 volts to 12 volts .

The board which we are using can be operated with an external power supply from 6 Volts to 20 Volts. . If the supply is less than 7 Volts, then 5V pin can supply less than 5V, because of which the board might become unsteady and if it uses more than 12V, it might lead to the overheating of the voltage regulator and damage the board. So the ideal operating distance is from 7V to 12V.

5. EXPERIMENTAL ANALYSIS

This hybrid system converts the three sources such as sound , heat and pressure into electrical energy . The piezoelectric transducer converts the mechanical stress / pressure that is being applied on it into electricity. Using the peltier module the heat energy in the surrounding can be converted into electrical energy. The sound absorption unit generates electricity by absorbing the sound energy from the surrounding. The electricity thus generated is stepped up using a DC-Dc booster. This energy is being stored in the battery for future purpose . This energy is used to power the DC load.

Figure 2. DC-Dc booste

6. FUTURE WORKS

In further to the proposed work of power generation from various hybrid energy sources, the additional power generation from foot step using piezoelectric and other source of generation can be added together and form a Nano grid i.e. power generation using the small sources for house/small applications.

7. CONCLUSION

As this model consists of three sources, even if one of the sources fails there will be a continuous power supply .Does not require any outside power supply. Can store control in a battery. Depending upon the generation it can charge the portable. Waste sound energy, heat and pressure are thus utilized effectively. Hence it is effectively convenient .Low maintenance and low control utilization.

REFERENCES

[1] N K Kaphungkui , Anku Phukan , Manash Sharma , Abhishaek Gogoi , Masoom Subhani "Highly efficient electricity generation with Peltier Module" Dibrugarh University Dibrugarh, Assam, India, 2016.

[2] A. Bacosa Jr., Mia Ariane P. Baldovino "An Electric Source of Noise Pollution Based Power Bank, in IRCHE 2017.

[3] Jedol Dayou , Man-Sang, C. , Dalimin, M. N. & Wang, S "Generating Electricity Using Piezoelectric Material" Borneo science, March, 2009.

[4] Nilsson J Thorstensson, "A ground reaction forces at different speeds of human walking and running" Act Physiological Scandinavica. Vol 136.

[5] Harinarayanan J, Adhithya K, Rajeshwar Anand, Balaji G, "Battery Charging Using Thermoelectric Generation Module In Automobiles" International Journal Of Research In Engineering And Technology Eissn: 2319-1163 | Pissn: 2321-7308

[6] J.Harinarayanan , B.R.Divya , V.P.Sandhiya and D.Swathy "Energy Harvesting Using Peltier Cell Through Cold And Heat Junctions" IJESIRD, Vol. III, Issue X, April 2017

[7] Sonal Renge, Yashika Barhaiya, Shikhar Pant, Shubham Sharma,"A Review on Generation of Electricity using Peltier Module", International Journal of Engineering Research & Technology, ISSN: 2278-0181,Vol. 6 Issue 01, January-2017

Screw Propelled Autonomous Amphibian Waste Collector

L.Kurinjimalar Department of Electrical and Electronics Engineering Sri Sairam Engineering College Chennai, India kurinjimalar.eee@sairam.edu.in

T.N.Hariprasad System Engineer Infosys Limited Chennai, India e7ee009@sairamtap.edu.in N.Anitha Department of Electrical and Electronics Engineering Sri Sairam Engineering College Chennai, India anitha.eee@sairam.edu.in

S.Kalyana Sundaram Drives and Automation Department SEW Erodrive India Pvt. Ltd. Chennai, India kalyansks99@gmail.com V.Malini Department of Electrical and Electronics Engineering Sri Sairam Engineering College Chennai, India malini.eee@sairam.edu.in

Abstract— Waste collection has become one of the most challenging tasks in highly populated countries. In places like pond and surrounding's, people gather and put light weight waste regularly. Waste collection in both water and land requires unusual manual effort. However, by using robot with special design it become very easy. In this paper, a novel design of screw propelled amphibian robot is proposed to manage waste collection in both land and water. The robot can work autonomously in wide variety of terrains which includes grass, road, marsh, water, etc. The mechanical design of the robot was developed in computer Aided Design (CAD) and prototype was designed and tested in various working environments. Mobile Application was developed for manual control.

Keywords—Arduino, Waste Collector, All-Terrain, Autonomous

I. INTRODUCTION

Every country tries to protect the planet and ensure that all people live in a hygienic environment and stay healthy. One of the prominent factors that can support this action is by managing the waste that are generated and accumulated in land and water bodies which pose a major threat to the environment. For example, The Great Pacific Garbage Patch where 80 percent of waste come from land-based sources, while the remaining 20 percent coming from boats and other marine sources. These wastes affect the naturally occurring phenomenon such as food chain, water cycle, etc. Manual collection of these waste in such remote places is expensive, repetitive and challenging task. For such monotonous tasks Autonomous Robots has a great advantage of doing it efficiently. Recently, many robots have been developed to collect waste separately in land and water. Our project aims to create an autonomous robot that could collect waste in all terrains. This will reduce the manufacturing cost of two individual robots to one and increase productivity. Therefore, an autonomous all terrain waste collecting robot will solve this problem.

A. Screw Propulsion

A Screw propelled vehicle is used, as it enhances the movement of the robot in both land and water terrains,

including a variety of terrains. The screw propulsion depends on the amount of helix angle given for each ben over the body of screw. It increases the propulsion as the curvature of the bend over the body gets enhanced for it to move over and above the respective ground surfaces. The principle of operation is that similar to that of the screw driving through a wall, here the machine drives through a terrain in similar manner. The threaded cylinders are large and hollow to ensure a substantial area of contact and buoyancy.

B. SPAAWC Locomotion

The motion of the SPAAWC robot depends on the rotation of the screw wheels. The SPAAWC robot can move in all direction. It won't sink in terrain as the method of locomotion itself involves the screw being buried in the terrain for more efficient movement. The various directions the robot can move and the corresponding wheel rotation direction is shown in the Table 1.

~	Left wheel	Counter Clockwise	Zero	Clockwise
		Direction		Direction
Right	wheel			
Count	ter clockwise	Moves Forward	Rotate Counter	Moves Left
	direction	Direction	Clockwise about	Direction
			Right screw axis	
	Zero	Rotate counter	No Movement	Rotate clockwise
		Clockwise about		About right screw
		Left screw axis		axis
C	lockwise	Moves Right	Rotate clockwise	Moves Backward
I	Direction	Direction	about left screw	Direction

II. DESIGN OF SPAAWC ROBOT

The proposed design makes use of an Arduino Board, 12Vhigh torque DC motors, a 12V battery, Servo motor for collection mechanism, PVC frame and screw wheels, transmission system. The design features are explained detailly, through conceptual design, mechanical parameters and for the collection of wastes over the ground surface.

A. Conceptual Design

The frame of the robot is made of PVC hollow bars which makes the robot easy to float as well as providing mechanical strength. The Archimedes screw wheels are also made of PVC pipes. The motors are attached inside the robot body and the motor shaft is connected to the screw shaft through a pulley and belt arrangement. The size of the pulley depends upon the torque requirement of the robot. The choice of the materials is based on the cost and mechanical stability Analysis.

The screws are placed in the sides of the robot. The collection mechanism is made of a shovel type design and is connected to the servo motor placed inside the robot body through arms. The CAD model of the SPAAWC robot in various views is shown in Fig. 1. The block diagram of the SPAAWC robot is shown in Fig. 2.

Fig. 1. CAD Model

Fig. 2. Block diagram of the SPAAWC robot

The Brain of SPAAWC robot consist of the raspberry pi and Arduino modules as master slave combination. The raspberry pi process all the sensor data and path planning algorithms and gives command to the Arduino board according to the output of the algorithm. The sensors used for localization of the robots are NEO-6M GPS Module and a HMC5883L magnetometer module. The GPS gives the longitude and latitude of the robot and the magnetometer gives the heading of the robot. With this data the robot can know where it is in the field. The Ultrasonic sensor is used for detection of obstacles in the path of the robot and if the robot is very nearer to the obstacle it changes its path for avoiding it.

The Arduino is connected to the DC motors through a L293D motor controller board which controls the speed and direction of the rotation of the wheels. The DC motors are connected to the screws through a pulley and belt arrangement. The movement of the robot can be controlled according to the login provided in table (1). The shovel and arm combination in the front of the robot is controlled using a servo motor which gets command from the Arduino. The waste is then put in the top box of the robot and can be disposed and further processed.

B. Mechanical Parameters of SPAAWC robot

The Body of the SPAAWC robot is 50 cm in length and 50 cm in breadth and 40 cm in height including the wheel of the robot. The SPAAWC robot is shown in the Fig. 3. The body size was considered based on the manufacturing cost, easy maneuverability, transportability of the robot.

Fig. 3. SPAAWC robot

The design parameter of the screw is formulated based on the literature review of [1]. From the literature review the ratio of drum length to the drum diameter is taken to be 6, and the ratio of blade height to drum diameter is 0.375, blade height and helix angle as 2 cm and 260 respectively.

In the SPAAWC robot the motor is connected to an aluminum pulley of inner diameter of 6 mm and outer diameter of 20 mm. The shaft is connected to a pulley of inner diameter 20 mm and outer diameter of 80 mm. The belts are mated with a V-Belt which transfer the power from the motor to the shaft.

C. Collection Mechanism

The collection mechanism is used for collecting the wastes and transferring the wastes to the Frame bin placed over the PVC frame. The mechanism consists of metal mesh, electrical connection pipes and servo motor for driving purpose. The metal mesh is made in such a way that it is able to collect all the wastes that is available on the path of the robot. The metal mesh is chosen so that the fine sand particles in case of land terrain, water particles in case of aquatic terrain is filtered off before transferring the wastes to the Frame bin. The Collection Mechanism is shown in the Fig. 4.

Fig. 2. Collection Mechanism of the SPAAWC robot

III. MODELLING OF A SPAAWC ROBOT

The Kinematic model of the SPAAWC robot is designed. When the wheel is actuated there occurs two components of forces, one is forward force and rolling force. Based on the screw wheel rotation the resulting force will result in the motion of the robot in any desired direction. The direction of motion of the robot motion depends on the wheel rotation direction and the velocity of the robot depend on the screw wheel angular speed and the terrain.

Considering Vx, Vy, Wz as the translational and rotational velocities of the robot. ωL and ωR are the angular velocities of the screws. R is the effective radius of the screw. L is the breadth of the robot. The Kinematic model of the robot is given in Equation 1.

$$\begin{bmatrix} V_x \\ V_y \\ W_z \end{bmatrix} = \frac{R}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ \frac{-1}{L} & \frac{1}{L} \end{bmatrix} \begin{bmatrix} \omega_L \\ \omega_R \end{bmatrix}$$
(1)

The Inverse kinematic model of the robot in matrix form isgiven in Equation 2.

$$\begin{bmatrix} \omega_L \\ \omega_R \end{bmatrix} = \frac{1}{R} \begin{bmatrix} 1 & 1 & -L \\ 1 & -1 & L \end{bmatrix} \begin{bmatrix} V_x \\ V_y \\ W_z \end{bmatrix}$$
(2)

From the inverse kinematic model, the angular velocities of the screws can be determined. The go to goal algorithm determines the distance and heading error using the data from the sensor and the goal location and feeds it to a PID controller which generates control signals to be given to the motor controller after determining the wheel speeds with the inverse kinematic model. Since this is an Omni directional robot the goal can be reached in many possible paths. A path can be designed for the robot to follow and it collects the waste with minimum possible error and efficiently. The robot can be powered using a solar power and a charging station can be provided nearby for it to recharge automatically. Multiple SPAAWC robots can be deployed for maximum effectiveness.

IV. PROTOTYPING AND APPLICATION DEVELOPEMENT

The prototype of the robot was fabricated based on the CAD model. The materials that are required for the fabrication of screw wheel are, -polypropene sheet, pipe (3inch), machining tools and bonding agents. The polypropene sheet that is to be used should be rigid and at the same time it should be flexible for cutting process. The materials that are required for the fabrication of body is PVC frames, polypropene sheet, nails and bonding agents. The Driving assembly consists of electronics and mechanical parts. The electronics part consists of Motor, Controllers and connecting links. The mechanical part consists of the pulley and belt. These should be placed on the PVC frames such that it is separated from the working parts. Also, it should be placed such that it is isolated when it is working in aquatic terrains. The driving mechanism of SPAAWC robot is shown in Fig. 5.

Fig. 5. Driving Mechanism of SPAAWC robot

Fig. 6. Mobile Application of SPAAWC robot

The prototype functions in two different manners, one in an automated programmed way wherein pre-defined directions are programmed into the application. And by the selection of the Automated programmed button, the prototype starts its motion accordingly. The other way is the Manual operation wherein the forward, backward, left and right directions are controlled manually by the use of switches. The collection process is also controlled manually by switch control. The Mobile application is shown in Fig. 6.

The Automatic and manual mode of operation is achieved by clicking the separately named buttons on the mobile application controlled by the HC-05 Bluetooth module through Arduino. For the mobile application to work, we need to connect the device to the Bluetooth and then the operation of the prototype in all in our hands.

V. CIRCUIT DIAGRAM

The circuit design and control involve the electronics design as well as Designing the control system which makes up the brain of the robot. In various parts of the robot communicate with each other for the complete operation of the SPAAWC robot. The circuits are split into Dc motor control circuits, Collection Mechanisms control and for the stability control circuits. The control of the robot is entirely dependent on the Table 1. The entire circuit diagram is shown in Fig 7.

Fig. 7. Circuit diagram of SPAAWC robot

VI. TESTING OF SPAAWC ROBOT

The testing of the SPAAWC robot was done to determine the advantages and disadvantages of the SPAAWC robot. The robotwas let to collect waste in different terrains which include grass,marsh, pavements, and road. The images of the robot working in the above-mentioned environment is shown in the Fig. 8.

VII. RESULTS

SPAAWC robot can work in terrains like marsh, pavements, water, grass etc. The testing of the SPAAWC robot was done to determine the advantages and disadvantages of the SPAAWC robot. The robot was let to collect waste in different terrains which include grass, beach sand, pavement block, rocky areas and Aquatic terrain. It was noted that the robot can efficiently navigate and collect waste in the above-mentioned terrains.

BEACH AREA

Fig. 8. Testing of SPAAWC robot in different Terrains

The SPAAWC prototype was made with polypropylene sheet of 4 mm thickness so it could easily cut through some surfaces and move. For future stiffness and flexible operation, the polypropene material can be replaced by folding sheet metal from proper machining tools.

Since, the wheels are made of hollow PVC tubing the robot was able to easily float in water and was very efficient. The battery used was a 12V 7.5Ah rating and could power the robot for an hour. The resulting weight of the robot was less than 10 kg so the robot can be driven with less power DC motors. Also, the collection mechanism involved a mesh which had openings for the sand, dust or water to drain out and only collect the waste. This made sure that no water or dust never affected the electronics circuits. The result curves are shown in Fig. 9.

Fig. 9. Result Curves

The Fig. 9 shows the curve which plots the operation in different terrains and its efficiency for omnidirectional movement. We can see that the obtained curves work well for Grassy lands, Aquatic Terrain and Beach sand and the operation in Pavement blocks and Rocky areas are not obtained with greater efficiency, due to the errors developed in the fabrication process and the errors in the actual environment while operation. These errors can be avoided by complete development of prototype in closed loop operation and using sheet metal for wheel fabrication process instead of Polypropylene material.

VIII. CONCLUSION

The Screw Propelled Autonomous Amphibian Waste Collector Robot with control of wheel rotations provides omnidirectional motion for all-terrains. The type of screw wheel configuration used is double screw composed of two counter rotating screws. The feasibility of this robot is studied and tested. For future work, different screw wheel configurations can be tested. For improving autonomous mobility further addition of sensors is possible. Camera can be attached and image processing can be done and segregation of waste can be done at the time of collection.

REFERENCES

 Jesus Hiram Lugo Calles, Vishal Ramadoss, Matteo Zoppi, Rezia Molfino(2017)-' Conceptual Design Of Tetrad-Screw Propelled Omnidirectional All-TerrainMobile Robot' - International Conference on Control andRobotics Engineering (ICCRE)

- [2] Freeberg, Jon T. (2010), 'A Study of Omnidirectional Quad- Screw-Drive Configurations for All-Terrain Locomotion'- Graduate Theses and Dissertations.
- [3] Kenji Nagaoka, Takashi Kubota and Satoshi Tanaka (2010)-'Maneuverability Analysis of Screw Drive Rover on Soft Terrain' -Proceedings of the Joint 9th Asia-Pacific ISTVS Conference, and Annual Meeting of Japanese Society for Terramechanics, #086-0042.
- [4] S. Chigisaki, M. Mori, H. Yamada and S. Hirose, "Design and control of amphibious snake-like robot acm-r5", Nippon Kikai Gakkai Robotikusu Mekatoronikusu Koenkai Koen Ronbunshu(CD-ROM),vol.43,2005
- [5] Introduction to Autonomous Mobile Robots, Roland Siegwart and Illah R. Nourbakhsh, The MIT Press, 2004
- [6] Lugo, J.H., 2015. "Development and testing of a mobile robot module to perform Remote Explosive Scent Tracing filter sampling in forest during humanitarian demining", Thesis for Master in Advanced Robotics, University of Genoa.
- [7] Taheri, H., Qiao, B., Ghaeminezhad, N., 2015."Kinematic Model of a four mecanum wheeled mobile robot", International journal of computer applications.
- [8] NomadXR4000. Omni-directional Robot, Nomadic Technologies, Inc. http://www.robots.com
- [9] Muir, P.F. and Neuman, C.P. 1987. Kinematic Modeling of Wheeled Mobile Robots, J. Robotic Systems, 4 (2):281–340.

https://ieeexplore.ieee.org/document/9767729

More Like This **Published in:** 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT)

Date of Conference: 10-11 March 2022	DOI: 10.1109/IC3IOT53935.2022.9767729
Date Added to IEEE Xplore: 12 May	Publisher: IEEE
2022	Conference Location: Chennai, India

ISBN Information:

Electronic ISBN:978-1-6654-7995-0 Print on Demand(PoD) ISBN:978-1-6654-7996-7

Contents

I. Introduction

The demand for energy in today's globe is very high, but the expense of the fuel necessary to generate it is also rising, with certain constraints in its accessibility. Solar power can be one of the most effective solutions for renewable energy resources, given the growing need for numerous sustainable sources of energy like solar, wind turbines, and so on. The energy can be harnessed in dc formSigsolatoPQqf1jinTueReaditeg converts the dc to grid-quality ac, which is then sent into the power system. Inverters are deployed to transform dc to ac voltage, However, in recent days, the multi-level inverter has grown in favor of reducing THD. They have the ability to generate a staircase waveform. The waveforms produced reduced harmonic distortion, low voltage stress, and improved power quality [2]–[4].

Authors	~
Figures	~
References	~
Keywords	~

IEEE Personal Account

Purchase Details

CHANGE USERNAME/PASSWORD PAYMENT OPTIONS

DOCUMENTS

Profile Information

COMMUNICATIONS

PROFESSION AND

TECHNICAL INTERESTS

PREFERENCES

EDUCATION

Need Help?

Follow

US & CANADA: +1 800 678 4333 WORLDWIDE: +1 732 981 0060

CONTACT & SUPPORT

5/16/22, 3:39 PM

PV Based Multilevel Inverter with 15 Levels using POD Control Method | IEEE Conference Publication | IEEE Xplore

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | IEEE Ethics Reporting 🗹 | Sitemap | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

© Copyright 2022 IEEE - All rights reserved.

IEEE Account	Purchase Details	Profile Information	Need Help?
» Change Username/Password	» Payment Options	» Communications Preferences	» US & Canada: +1 800 678 4333
» Update Address	» Order History	» Profession and Education	» Worldwide: +1 732 981 0060
	» View Purchased Documents	» Technical Interests	» Contact & Support

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2022 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

Published in: 2021 2nd Global Conference for Advancement in Technology (GCAT)

INSPEC Accession Number:
21417912
DOI:
10.1109/GCAT52182.2021.9587724
Publisher: IEEE
Conference Location: Bangalore, India

Contents

I. Introduction

For a couple of decades, growing energy issues around the world, as well as degradation of natural ecosystems, have drawn the attention of the engineering and research communities. The understanding of how to convert renewable resources into usable forms is quickly maturing. The advancement of semiconductor technology and the introduction of fast switching power electronic converters have greatly aided energy conversion technologies [1-2]. Sustainable energy use has progressed from transferring the energy of flowing water to immediately transforming solar energy to electrical energy today. Photovoltaic solar (PV), with effectiveness as poor as 5-6 percent and extremely expensive, has previously proved ineffective. But the efficiency of the proposed array is currently between 15 and 16 percent, with increasing experimental demonstration and progress. In addition, prices declined steadily [3-4]. Today, the photovoltaic conversion efficiency is seen as a good alternative to fossil-fuel power generation systems as no hazardous emissions, no emissions of greenhouse gases, no engagement in fuel costs, fewer maintenance expenses, no usage of water, etc. exist. Induction motor starts with home appliances for industries and even for electric cars and cranes and is commonly used in daily lives [5]. 60 percent of electricity usage for electric motor systems is utilized in industrial operations. The IM system is extensively utilized in light of several features, especially with a simple structure, limited volume, ease of operation and flexibility, high efficiency, energy density, large beginning torque, consistent torque ranges, reliable responsiveness to torque under certain operational conditions, and others [6-7]. In conjunction with the growth of industrial activities and the advancement of electric vehicles, total electricity demand for electric drives activities is predicted to increase. Commonly, scalar control and vector control are the kinds of IM drives. A basic structure, low price, convenient to construct, the low-state error is shown in the scalar control [8-9]. Nevertheless, high-performance control over IM was still not achieved using scalar control. The vector control has the advantages of controlling the location of the flow, tension, and current vector in view of maximum control, in comparison to scalar control, resistive control, and phase control, needs a smaller amount of energy usage and greater efficacy [10-11]. FOC can be classified as direct and indirect. To determine the flow rotor, DFOC requires at least two hall sensors on the air gap. Whenever applied to IM, the use and implementations are challenging and inefficient. Thus, in this scenario, IFOC's assessment methodologies have an edge [12-13]. Furthermore, IFOC has a simple interface to be applied to make it popular in automotive purposes. The IM speed must be controlled simply and reliably in broad operating circumstances in order to enhance performance. The PID controller is one of the simplest

and most dependable controllers. An IM is a sophisticated system that takes a greater amount of effort in developing the system of drive and control [14–15]. Today, numerous real-time control systems are in place in and drive electrical machines for manufacturing, education, or research, in step with the growing complexity of systems and project costs. The controller is an additional policy designed to shorten the duration, test models, and validate complicated systems.

~
~
~
~
~

IEEE Personal Account	Purchase Details	Profile Information	Need Help?	Follow
CHANGE USERNAME/PASSWORD	PAYMENT OPTIONS VIEW PURCHASED DOCUMENTS	COMMUNICATIONS PREFERENCES	US & CANADA: +1 800 678 4333	f in ¥
		PROFESSION AND EDUCATION	WORLDWIDE: +1 732 981 0060	
		TECHNICAL INTERESTS	CONTACT & SUPPORT	

About IEEE *Xplore* | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | IEEE Ethics Reporting 🗹 | Sitemap | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

© Copyright 2022 IEEE - All rights reserved.

IEEE Account	Purchase Details	Profile Information	Need Help?
» Change Username/Password	» Payment Options	» Communications Preferences	» US & Canada: +1 800 678 4333
» Update Address	» Order History	» Profession and Education	» Worldwide: +1 732 981 0060
	» View Purchased Documents	» Technical Interests	» Contact & Support

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2022 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

PAPER • OPEN ACCESS

IoT Based Energy System in A Facts of Principle Intrusion on Power Administration

To cite this article: M Rajasekaran et al 2021 J. Phys.: Conf. Ser. 1979 012062

View the article online for updates and enhancements.

This content was downloaded from IP address 136.232.10.146 on 10/08/2021 at 05:11

1979 (2021) 012062 doi:10.1088/1742-6596/1979/1/012062

IoT Based Energy System in A Facts of Principle Intrusion on **Power Administration**

M RAJASEKARAN¹, R SRINITHI², S SANJANA³, K V SAADURYA⁴

¹Assistant Professor, Department of Electrical and Electronics Engineering, Sri Sairam Engineering college, Chennai.

² Student, Department of Electrical and Electronics Engineering, Sri Sairam Engineering college, Chennai.

³ Student, Department of Electrical and Electronics Engineering, Sri Sairam Engineering college, Chennai.

⁴ Student, Department of Electrical and Electronics Engineering, Sri Sairam Engineering college, Chennai.

rajasekaran.eee@sairam.edu.in,srivedharaja327@gmail.com,sanjusudha1999@gmail.com, saadumukil1426@gmail.com.

Abstract-The Stimulation to accomplish energy usage at a residential direct Asian country is influenced by political economy, status, and technical reasons. Economically, it offers a discount of state subsidies and electricity bills. The ecological condition facet permits the reduction of CO2 level. we are able to limit the availability to the house by pre-default setting the worth to be consumed so energy will be managed by limiting. the facility administration system comprises of Alphanumeric Power cadences are put in apiece shopper unit and an Electricity e-Billing scheme at the energy supplier aspect. Wireless sensing element network sends its power usage reading exploitation data back to the energy supplier wirelessly. On the facility supplier aspect, they'll amendment the devices' priority once power is distributed within the low vary.

Index Terms- Electricity e-billing, Wireless sensing element network, pre-default setting, Digital Power meters.

1.Introduction

Anthropological machinist promoting is liable to interpreting miscalculation as sometimes the house electrical supremacy meter is placed in an advert which is not effortlessly reachable. The notion of zestful mission of primacies to intrudes is discoursed, which diminishes the interval of interruption for a low primacy job, which becomes a high primacy job. Carving for intrude skills is also discoursed, which can be used to develop the staging.

The uppermost precedence chore is ladled out for supplementary number of times and with a lesser epoch. Hence it is not prerequisite time lag for the tab time of former hitherto high primacy intrudes. If power is fewer in the grid, automatically, it will accomplish energy. Our projected system with low power cohort automatically goes to power management. All the devices controlled depend upon the

International Conference on Recent Trends in Con-	mputing (ICRTCE-202	I) IOP Publishing
Journal of Physics: Conference Series	1979 (2021) 012062	doi:10.1088/1742-6596/1979/1/012062

priority-based and timing-based control of the apparatus with low power cohort. In the Prevailing System, meter reading was taken physically. Errors occurred due to less concentration. Meter reading is not precise, Enormous Manpower needed. Delayed work due to external conditions Power cut manually due to lack of payment. In the anticipated system, the Measure reading is taken robotically using GSM technology.

Power expurgated achieved from EB administrative centre concluded wireless work happen at any time and peripheral conditions less manpower, high truthful measure interpretation, customer service and well power super vision. PIR sensor is used to find the person entered into the room.

2.Methodology

 Inputing (ICRTCE-2021)
 IOP Publishing

 1979 (2021) 012062
 doi:10.1088/1742-6596/1979/1/012062

Figure.1. For Voltage and Current Calculation from The Load. **Figure.2**. For Fault Occurrences in The Street

3.Design of Experiment

Figure.3. Block Diagram of the Project

International Conference on Recent Trends in Computing (ICRTCE-2021) 1979 (2021) 012062 Journal of Physics: Conference Series

doi:10.1088/1742-6596/1979/1/012062

CT sensor measures current. PT sensor measures voltage. Both CT and PT are connected to the controller. The value of CT and PT are sensed and displayed in LCD. GSM is interfaced with the regulator when it crosses the ultimate voltage, the GSM building block sends squat communication facility to the enumerated itinerant digits.

PIR sensor is interfaced with the microcontroller, and it is intimated through the GSM. Firstly, a threshold value is set for CT and PT. If the current value or the voltage value exceeds the threshold value, usually the fuse will be blown in the existing system. Whereas in the proposed method, directly, the load will get switched off. The present value of the current and voltage will be detected, and the value sensed will be sent to the registered mobile number. The distribution transformers present in the fault detection system plays a vital role in this energy management system.

If the voltage sent to these transformers is lesser or greater than the fixed threshold value, it will lead to tripping of the circuit, the voltage value and the distance between the transformers will be sensed, and the detected value will be sent to the registered mobile number. This value is also uploaded to the webpage using HTML scripting language.

230V AC

4×1N/

7912

1000

Figure.4. Main Circuit Diagram of the Project

-12V

Figure.5. Power Supply Circuit Diagram of the Project

4.Devices

4.1 Transformer:

In the project, it uses a step-down transformer of core type. The power supply of the transformer is a 230V 50Hz AC supply. The rating of the device is 230/12 V 1A.

4.2 Bridge Rectifier:

Other devices require DC supply in the project. For conversion of AC to DC supply, we use bridge rectifiers. For filtering the output of the rectifier, we use a 1000uf capacitor.

4.3 Voltage Regulator:

For the power supply of 5V, we use an LM7805 voltage regulator for regulating the supply separately for 5v power supply devices.

4.4 Trim pot (pre-set potentiometer of 10k ohm):

A visual form of the real-time problem needs to show the frequent change in the voltage and current for the load. So, we use pre-set potentiometer of 10k ohm for variable change in voltage and current, with power supply of both 5V and 12V DC.

4.5 Current Sensor:

With the supply power of 5V DC, we use ACS712 current sensor to sense the change in the present value which flows into the load.

4.6 Voltage Sensor:

With the supply power of 5V DC, we use voltage sensor whose V_{cc} <25V, to sense the change in the present value which is across the load.

4.7 Relay:

With the supply power of 12V DC, HL JQC-3FC, we use this relay which control the load by switching off it when the load receives a change in value of voltage and current in reference with the threshold value.

4.8 Arduino UNO Board:

The main program of this project is encrypted into this board for the progress of the output.

4.9 Ethernet Board:

Using LAN connection, the calculated value is updated in the webpage in a particular IP address for the provider side.

4.10 GSM Module:

With a direct connection from the main for the power supply of the GSM Module which is used in our project, through which the calculated value is send to registered mobile number.

4.11 16*2 LCD Display:

Liquid Crystal Display of 16*2 is used in the project for the displaying the value sensed and gets the value from the interfacing it with Arduino UNO.

4.12 Jumper wire:

Female Pin and Male Pin Jumper wire is used in this to communicate with all other devices from Arduino UNO.

5.OUTPUT

Figure.7. Amount produced Current

Figure.8. Amount produced Voltage of Street1

Figure.10. Yield Voltage of Street3

Figure.11. Output Graph for Current sensor

Figure.9. Yield Voltage of Street2

IOP Publishing

Journal of Physics: Conference Series

1979 (2021) 012062 doi:10.1088/1742-6596/1979/1/012062

Figure.11. Update in Webpage to Provider Side

Consumer.

6.CONCLUSION

The voltage value and the current value at the present situation is detected. The distance between the distribution transformers during fault occurrence is sensed and uploaded to the website, then to the registered mobile number.

IOP Publishing

7.REFERENCE

- [1] In 2011, Ming Meng *, Dongxiao Niu and Wei Sun has Published Paper, "Forecasting Monthly Electric Energy Consumption Using Feature Extraction"
- [2] In 2016, Jinsoo Han, Moonok Choi, Ilwoo Lee, and Sang-Ha Kim has published paper, "Photovoltaic Energy Sharing System in a Multifamily Residential House to Reduce Total Energy Costs"
- [3] In 2016, J. E. G. Salas, R. M. Caporal, E. B. Huerta, Member, J. J. Rodriguez and J. J. R. Magdaleno has published paper, "A Smart Switch to Connect and Disconnect Electrical Devices at Home by Using Internet"
- [4] In 2008, M. Merabti, P. Fergus, O. Abualma'atti, H. Yu, and C. Judice has published, *"Managing distributed networked appliances in home networks"*
- [5] In 2012, Md. Manirul Islam1, Mohiuddin Ahmad, Md. Ajijul Islam, Abu Farzan Mitul, M. F. Malek, and M. A. Rashid has published paper, "Electronic Energy Meter with Remote Monitoring and Billing System"

PAPER • OPEN ACCESS

Automation of Sustainable Industrial Machine using PLC

To cite this article: K Rajkumar et al 2021 J. Phys.: Conf. Ser. 1979 012049

View the article online for updates and enhancements.

You may also like

- PLC Omron CJ1M CPU-21 Control Modification for Drill Oil Hole Machine in an Automotive Company
 Lin Prasetyani, Bayu Ramadhan, Tresna Dewi et al.
- Multiwavelength Period–Luminosity and Period–Luminosity–Color Relations at Maximum Light for Mira Variables in the Magellanic Clouds Anupam Bhardwaj, Shashi Kanbur, Shiyuan He et al.
- <u>The Portevin-Le Chatelier effect and</u> <u>strain-rate-induced plasticity enhancement</u> <u>in Mg-4Li and Mg-4Li-1Al alloys</u> Guiying Sha, Teng Liu, Miao Yin et al.

This content was downloaded from IP address 136.232.10.146 on 26/03/2022 at 07:31

doi:10.1088/1742-6596/1979/1/012049

Automation of Sustainable Industrial Machine using PLC

K RAJKUMAR¹, K THEJASWINI², P YUVASHRI³

Assistant Professor, Department of Electrical and Electronics Engineering, Sri Sairam Engineering College, Sai Leo Nagar, Chennai-44, TN, India.

² Department of Electrical and Electronics Engineering , Sri Sairam Engineering College, Sai Leo Nagar Chennai-44 ,TN, India

³ Department of Electrical and Electronics Engineering , Sri Sairam Engineering College , Sai Leo Nagar Chennai-44 ,TN, India.

rajkumar.eee@sairam.edu.in , theji2k@gmail.com, yuvashree.palani1502@gmail.com

Abstract. At present, the machine gets operated manually and also by command raised by computer artificially, but mostly conventional machines operation done by humans. This leads to seeking attention keenly by humans for the operation which also increases time consumption to drill or milling of certain objects. Our project completely weeds out the physically cabled connection present in conventional BFP160 machine by introducing the PLC control technique. This design implements machine operation using the PLC control technique for trouble-free changes and error rectification in the system by reducing the number of contractors held by relays. The physically complicated control wiring using relay logic was replaced by a swift, compact Programmable Logic Controller (PLC). The entire logic and interlocks were incorporated into PLC. This wipes out the breakdown to the lesser time thus increasing the operating speed and overall equipment efficiency (OEE) of the machine. An existing conventional machine gets automated using PLC which gets programmed using the ladder logic programming with the processor for increased automation to peak level. Here the machine availability gets increased as the breakdown time gets reduced and efficiency of the certain machines is particularly improved thus initiated to greater production in set out manner. All additional considerations employed by Variable frequency drive (VFD) for speed control of feed motor by eliminating electromagnetic clutches along with telescopic brushes responsible for the movement of axes to drill or milling of the certain workpiece by the conventional machine. Our design proposes for the instant signal whether any part which gets interrupted while operation. Here this logic gets programmed and simulated using PLC software which is available based on a number of inputs and outputs.

Index Terms-PLC, OEE, Conventional, VFD, BFP160, Relay Logic.

1. Introduction

With the onset of new technologies, the functionality of the conventional BFP160 machine can be amplified by restoring the complete reduction of the cabled interrelation by the intrusion of the PLC control technique. This actually weeds out the operation of breakdown to be less and reduces the work of man force by enabling the time reduction. Enhancing this technique also saves the installation cost and also magnifies the speed of the machine which successively ignites the efficiency of the machine to a higher level. This design is incorporated by the interfacing of various electrical and mechanical components with PLC. This also implements the complex buttons by implementing the control principles like ON/OFF or switching control via PLC. This completely eliminates the manual seeking of controlling the position of the work piece which in turn said here as the automation of the conventional machine. This said to be the step response for the evolution with International Conference on Recent Trends in Computing (ICRTCE-2021)IOP PublishingJournal of Physics: Conference Series1979 (2021) 012049doi:10.1088/1742-6596/1979/1/012049

upcoming onset technologies. This design works out to be the best one for a conventional to automated workout. This serves to be the endeavour for the upcoming technological outcome for this present on set of automation. Our project simulation control design adduced with the entire automation of the conventional machine and thereby increasing the efficiency and also the breakdown time to be lesser and also the entire maintanence becoming reduction oftime.

2. Existing System

The existing systems comprise of high burden content of relay logic which is enrolled for any machine operation in a certain manner. The difficulties in identifying and commemorating further operations after the occurrence and rectification of the faults take quite a longer duration in manual operation. The time required for hold on to a certain machine is quite large time which also wastes time and also the efficiency of a machine reduced and also the manpower which also getting increased and which collapses the entire production in delay. If any fault persists in the machine it is typically difficult for us to identify and what makes fault is unable to sense as it involves a complex wiring, relay, and several contactor arrangements. This involves quite a long time for fault detection and then rectification. In this meantime, the corresponding machine is to be halted for maintenance & repair work and so the machine's efficiency gets faded down and which incorporates manual interventional losses with the entire production in delay which affects the entire economy designed for a certain machine.

3. Block diagram

Figure 1. Block Diagram Representation.

4. Description

4.1 Power Supply :

A power supply intiates the direct current to the central processing unit (CPU) and other modules in the rack present. They are accessible in various power ratings and sizes incumbent on the PLC itself. However, most PLCs are premediated with a backup battery to furnish energy to the CPU for a specific duration in circumstances like power outage or supply failure.

4.2 Input/output Modules :

These modules accepts the processor to associate to the field devices. They build a connection between PLC and field devices namely control valves, pressure transmitters, flow transmitters, and analyzers. The control over these entered to input and output modules respectively Emergency control switches, Lubrication limits, axis control, starter controls, coolant tor control, operations like cutting, inching either in forward or reverse direction for the job piece to be produced accordingly in X-axis or Y-axis or Z-axis or along spindle axis for an appropriate selection switches to be selected in PLC and to be programmed earlier in specified manner and can be loaded either through online mode or USB or Ethernet cable can be used along the PC as a transmitting media which when aligned as an operating panel which executes the portrayed logic as a control of entire machine as an automated one.

4.3 Processor:

Here a programmable logic controller (PLC) is the hardware that is accustomed to sway the manufacturing processes or any pursuit that needs logic, counting, timing, and network communications works as a processor. Here DELTA DVP-SE Series is incorporated along with fast logic operation, lavish instructions and numerous function cards, the cost-effective DVP-PLC also bear various communication protocols, connecting Delta's AC motor drive, servo, human machine interface and temperature controller through the industrial network in to a complete "Delta Solution" for each and every every users.

4.4 Programming Device:

A personal computer (PC) or Laptop with the suitable software allows users to create, edit, store, and troubleshoot various programs. The PC integrates with the PLC processor via a parallel or serial data communication link. Periodically miniature devices are also used to program small PLCs. Here programmed can be done earlier in specified manner and can be loaded either through online mode or USB or Ethernet cable can be used along the PC as a transmitting media which when aligned as an operating panel which executes the portrayed logic as a control of entire machine as an automated one.

5.Proposed System:

Our proposed system is initiated with advanced automation through an understandable and clear vision of programming language which is via Programmable logic controller PLC. According to the present onset of various technologies in industries, automation took a predominant role in this upgraded technology. This initializes the interfacing for inputs and outputs already inside the controller which in turn weeds out the breakdown time to be lesser and also eliminates the burden of wiring arrangement which also finds difficulty in fault clearance and also the annual intervention. This incorporates all rugged and designed construction to withstand the vibrations, temperature, humidity, etc.

IOP Publishing

Figure.2. Proposed System

Enhancing this technique also saves the installation cost and also magnifies the speed of the machine which successively ignites the efficiency of the machine to a higher level. Here this logic gets programmed and simulated using PLC software which is available based on a number of inputs and outputs. This design work is done for Programmable Logic Controller (PLC) serves to be a "Workhorse" of industrial automation. This focused on weeding out the relay control logic to automation which is a machine control logic. The outgrowth is operated by physical or a standard ones which abdicate lesser productivity and may not be energy efficient but such practices were inevitable till the advent of the concept of automation. Automation brought the revolution in every field of application to a greater extent incorporating technologies and machines to do activities in an efficient manner by reducing human intervention.

6. Flowchart:

Figure 3. Working Flow of PLC Logic
1979 (2021) 012049 doi:10.1088/1742-6596/1979/1/012049

7. Experimental Results:

Our paper adduces a design through a PLC logic inorder to convert an conventional milling machine which intricates with the relays, contactors and certain wiring arrangements to automated machine design. This paper proposes a upgraded automation technology inorder to overcome several drawbacks which are loss in efficiency of a machine which happens because of a breakdown (failure of contactors, relay arrangement, wiring discharge).

To line up this or to avoid this criteria this paper adopts this automation technique. Our paper adduces actually weeds out the operation of breakdown to be less and reduces the work of man force by enabling the time reduction .Enhancing this techniques also saves the installation cost and also magnifies the speed of the machine which successively ignites the efficiency of the machine to higher level. This design is incorporated by interfacing of various electrical and mechanical components with PLC. This also implements the complex buttons by implementing the control principles like ON/OFF or switching control via PLC .This completely eliminates the manual seeking of the controlling the position of the work piece which in turn said here as the automation the conventional machine. Here adopting DVP-SE Series for PLC design logic which controls the machine operations which enrolls Emergency switches for an emergency operation of machine while automatically operated , Lubrication level limits to limit friction which causes overheating in the motors and leads to winding damage , Axes controls for the workpiece to be positioned for an accurant output piece to be delivered and also also gets initially checked in the depicted simulations through DELTA PLC software.

Here DELTA PLC preferred as DVP-SE series is enrolled for the efficient automation of the machine control and the installation of this PLC is inculpated for the machine in mentioned arrangements. This series is preferred as it offers high reliability, high speed for efficient way of machine operation. The main panel descriptions for a conventional machine includes Starters, Axis selection switches, Coolant motor control, Main motor control and the entire operation is initially presented in the PLC DVP-SE series which overall contains 12 inputs which intrudes 8 outputs in which logic -Emergency control switches, Lubrication limits, axis control, starter controls, coolant tor control, operations like cutting, inching either in forward or reverse direction for the job piece to be produced accordingly in X-axis or Y-axis or Z-axis or along spindle axis for an appropriate selection switches to be selected in PLC and to be programmed earlier in specified manner and can be loaded either through online mode or USB or Ethernet cable can be used along the PC as a transmitting media which when aligned as an operating panel which executes the portrayed logic as a control of entire machine as an automated one. Our design initiates the wiping out the workforce and reducing the number of contactors, wiring arrangements which saves definite time intervals and energy and also weeds out the breakdown time to be less which hikes the efficiency of the machine by smooth operation of machine from conventional to automation. All controlling and monitoring of other important requisites of certain processor are done at same instant. This said to be the step response for the evolution with upcoming onset upgraded technologies. This design enrolls the simulation under ladder logic as it results in easier understanding and also simpler.For instance for carrying out the inching process in forward or reverse which resembles like below in DELTA software with DVP-SE Series.

7.1. Simulating in DELTA DVP-SE:

Figure 4. PLC LOGIC FOR INCHING (MILLING)

8. Conclusion:

PLC programming will change, and now that smaller micro and mini USB connections are available, you can expect to see this feature on more small PLCs. PLCs will continue to develop in the future as networking, hardware, and device infrastructure improves.New industrial automation equipment is propelling businesses forward. We have seen a significant shift in technical advances transform the industrial automation landscape from inception to the advent of collaborative robotics. This emerging automation technology will form the market in the coming year.The global automation industry, on the other hand, has been improving and expanding its capabilities. The threat of security has disturbed curiosity in open-source software, which is maintained by a vibrant group willing to patch bugs.

REFERENCES:

[1] Alison Dunn 2017 "The father of invention: Dick Morley looks back on the 40th anniversary of the PLC" Manufacturing Automation(China).

[2] Harinarayanan J, Ramesh Prabhu S 2016 "Smart Energy Management with Automation of Power Switching using Source and Load Prioritization", vol 1 Journal of Advances in Electrical Device.

doi:10.1088/1742-6596/1979/1/012049

[3] Helen Maria Sabu, Aravind V.B, Apurva Sullerey and Binson VA 2015 "Online Monitoring of PLC Based Pressure Control System" International Journal of Research and Innovations in Science and Technology,vol 2, pp 47-50, .

Rajkumar K, Thejaswini K, Srinithi R 2019 "Ghosting based verge heedful system using [4] Arduino" on International Journal of Engineering & Advanced Technology, vol 8.

Sudeep Kelaginamane, Sridhar D. R 2015 "PLC Based Pneumatic Punching Machine", [5] Journal of Mechanical Engineering and Automation, vol 5 (3B), pp 76-80.

Subhasini Dwivedi, Michael Fernandes, Rohit D'souza 2016 "A Review on PLC based [6] Automatic Waste Segregator" International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), vol 5(2), pp 280-285.

Richa Netto, Aditya Bagri 2013 "Programmable Logic Controllers" International Journal of [7] Computer Applications, vol 77(11), pp 27-31.

International Conference on Recent Trends in Co	omputing (ICRTCE-202	l)	IOP Publishing
Journal of Physics: Conference Series	1979 (2021) 012049	doi:10.1088/1742	-6596/1979/1/012049

PAPER • OPEN ACCESS

Walk Assistance For Outwardly Challenged People

To cite this article: K Rajkumar et al 2021 J. Phys.: Conf. Ser. 1979 012065

View the article online for updates and enhancements.

You may also like

- An implementation of a device to assist the visually Impaired / blind people for easy navigation through bus Dr. V. Siddeswara Prasad and R Sagar
- <u>Methane Monitoring in Kitchen Based on</u> <u>ZigBee Antenna Array</u> Zhili Wang, Shenglei Zhao and Xuezhen Cheng
- <u>An Energy-Efficient Routing Protocol for</u> <u>ZigBee Networks</u> Qijin Wang, Dandan Wang and Xiaoxia Qi

This content was downloaded from IP address 136.232.10.146 on 26/03/2022 at 07:30

Walk Assistance For Outwardly Challenged People

K Rajkumar¹, K Thejaswini², S Subarna³, P Yuvashri⁴

¹Assistant Professor/ EEE, Sri Sairam Engineering CollegeChennai, India

^{2,3,4}UG student / EEE,Sri Sairam Engineering CollegeChennai, India e-mail: ¹rajkumar.eee@sairam.edu.in, ²theji2k@gmail.com, ³subu3099@gmail.com. ⁴yuvasree.palani1502@gmail.com

Abstract. The blind's competency is to navigate to a particular place and to commence their daily activities is of decisive importance for their prosperity. It is estimated about one billion people are blind out of 285 million people visually impaired of all ages, according to the statistics of World Health Organization. This work includes an affordable and more efficient navigation aid for the blind which provides artificial vision by providing knowledge about an environmental scenario of static and dynamic characteristics of objects around them. This system induces a smart cane with ultrasonic sensors placed to intimate the intermediaries to their acknowledgment through Bluetooth. ZIGBEE used in this project so as to met the sensor and control device communication standards for navigation for the blind with the smart cane via Google maps their destination.

Keywords: Ultrasonic sensor, Arduino microcontroller, Navigation aid, Zigbee receiver, Smart cane

1. Introduction

A person who believes that it is difficult to discern the smallest particles with strong eyes is a visually challenged person. These people are viewed as outwardly disabled. An examination by World Health Organization worldwide the amount of people of all ages ostensibly blocked is evaluated to be 285 million, of whom 39 are outwardly disabled. The rule issue with ostensibly weakened people is the best approach to cross their way to deal with any spot they need to go. Such people need assistance from others with extraordinary visual insight. This assessment proposes a method to set up a clever stick to help visually challenged people. The standard course helps for individuals with visual weaknesses are the walking stick and guide canine which request various defects. Passing most essential sickness of these aides include principal capacities and getting ready stage, the extent of development, and outstandingly unimportant correspondence. Our increment adjusted this stick for certain devices sections like sensors and some electronic devices. The ultrasonic sensors, water sensors, and ZIGBEE record information about the presence of obstructions in transit. Clamminess drops water significance distinguishing proof sensor which encounters if there is water in the method of the customer. Most outwardly impeded bearing structures use ultrasound since it is protected from

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

the natural noise. With the speedy advances of current development both in gear and programming, it has gotten safe to cross through the customers. Development both in gear and programming it has gotten safe to cross through the customers.

2. Literature Survey

Nowadays, wearable technologies are evolving but it cannot be adopted by all people in an efficient manner especially by the visually impaired people. Few systems adopted by us it discussed below. The wearable and affordable smart cane system guides the people and detects static and dynamic objects around them via sensors like infrared for scanning the predetermined area around them by emitting the reflecting waves. These waves indicate the direction and distance from distant objects around them. The central theme of this paper is to provide traverse aid and detection of mediators to make them wearable with upgraded technology. The purpose of this arrangement is to establish an application that enables visually impaired individuals to identify many static and dynamic obstacles in an unexpected way, identifying pits on the ground to allow walking. The various sensors' features are to perceive the obstacle for sway avoiding and to recognize a lot all things toward every way. To perceive pits on the ground, the position sensor is placed close to the bottom tip of the walking stick. The detection of these perceived pits is the headset microphone and chip are playing. The hardware components used in the design are the ZIGBEE receiver, sensors, power supply unit, voice record, playback device, Bluetooth speaker. It is an affordable, configurable, Intelligent guidance system that is reliable and easy to manage. In order to get recharged, it would be more beneficial beforehand.

3. Proposed System

The Ultrasonic sensor, infrared sensor, and dampness sensor connected to the microcontroller codes with the Arduino, and the actual sensor was connected to the microcontroller. Our proposed device consists of an Ultrasonic sensor. It has 14 advanced yield and information pins, 6 of which can be used as PMW yields, 6 basic data sources, a 16 MHz quartz gem, a USB association, a force jack, a reset button for an ICSP. The humidity sensor consists of two wire tests that rely on water interference to detect its consistency when a touch occurs. The ZIGBEE transmitter was attached to the microcontroller as Arduino sketch codes were composed and the microcontroller was awarded the ZIGBEE.Physical and MAC layers claim it, while this convention finished by aggregating the own organization and application layers of Zig bee.

The framework can show obstructions that exist on the ground during strolls indoor and open-air crossing. The shrewd stick is basically an installed system integrating the accompanying: pair of ultrasonic sensors to detect leaps from ground level tallness to head level stature in the region of 400 cm per head before the visually impaired. Continuous information is taken and sent to the microcontroller by ultrasonic sensors and water sensors. After handling this information, the microcontroller incites the signal. Water on the ground complicated by the water sensor and the battery used to power the circuits. The savvy stick is just an inserted framework that integrates the corresponding pair of ultrasonic sensors to detect deterrents in the range of 400 cm per head level tallness before the visually impaired from ground level stature to head level tallness. Continuous information is taken and sent to the microcontroller by ultrasonic sensors and water sensors. After preparing microcontroller actuates the bell. On the field, the water sensor detects water, and the battery is used to power the circuits. As Arduino sketch codes were developed, the ZIGBEE transmitter was interfaced with the microcontroller and the ZIGBEE was related to the microcontroller. The structure will ready the careless to uninhibitedly investigate to their optimal goal. It is moreover straightforward and more direct. It is convincing and traditionalist and subsequently can be mass conveyed for use of the apparently tried people. The system can recognize blocks that exist on the ground during walks indoor and outside intersection. The splendid stick is feasibly an introduced structure consolidating the going with pair of ultrasonic sensors to versatile obstacles before the outwardly impeded from ground level height to head level stature in the extent of 400 cm a head. Ultrasonic sensors and water sensors

take steady data and send it to the microcontroller. The microcontroller starts the signal after setting up this data. From 400 cm ahead. Continuous data are taken and sent to the microcontroller by ultrasonic sensors and water sensors. In the wake of getting ready, the sign affects the microcontroller.

Fig.1. Block diagram

A.Block diagram operation

• In this block diagram figure.1 shown portrays regarding various sensors and receiver signal which is interfaced microcontroller.

• Here the various sensors which demand various signals through Zig-Bee receiver which interfaced with Arduino UNO.

• The ultrasonic, Infrared, and Moisture depth water sensor whose code is dumped in Arduino and gets executes the code accordingly in which Ultrasonic sensors which intimate the user about intermediate objects around them and also water pits or water logs, the darkness of the light by moisture depth water sensor and infrared sensor respectively.

• This gets operated by cane through the switch provided and all other signals like the tracking part are internally linked via Zig-bee a layer which also communicates the signals which are also interfaced by code in ARDUINO sketch.

- Here the power supply is through a battery which is regulated by Voltage Regulator.
- This gets operated manually by switch which is attached to smart cane.

Journal of Physics: Conference Series

 IDP Publishing

 1979 (2021) 012065
 doi:10.1088/1742-6596/1979/1/012065

Fig. 2. Flow chart

B. Flow chart operation

• Here this flowchart gets operated when the power of the circuit gets initialized.

• This starts the process by scanning the obstacles if it is detected intimates the signal sent to the receiver and also same done by the infrared sensor detection and the same gets indicated and intimates the signal which is sent to the receiver.

• Finally, the waterlogs or pits that are recognized also get intricate, and these signals get sent to the receiver which is interfaced by the microcontroller, and these operations get completed.

• This operation gets executed manually by switch operation located in the smart cane.

C. Circuit diagram Operation

The smart cane recognizes the voice through voice recognizer and the signal which gets transmitted to Zig-bee receiver which in turn sends a signal to Bluetooth interfaced by the application layer of Zig-bee receiver where physical layer contacts the smart cane. The sensors used here are the Ultrasonic, Moisture depth water sensor, and infrared sensor in order to intricate the mediatory objects. In order to verify their efficiency and know if they function according to the specification, testing of each part of the smart cane performed.

Ultrasonic Sensor: the ultrasonic sensor was tried, and the framework worked by determining a good way off not very a long way from the client. The bell was demanding the obstructions in transit of the user. Water Detection Sensor: In the water holder, the dampness sensor was drenched, and a blaring sound was heard that was not the same as the signal seen from the recognition of obstacles. The yield for water recognition keeps the client from initiating into static water in the climate. At

International Conference on Recent Trends in Cor	nputing (ICRTCE-2021) IOP Publishing
Journal of Physics: Conference Series	1979 (2021) 012065	doi:10.1088/1742-6596/1979/1/012065

whatever point the stick is embedded inside any profound water, the semiconductors will make the caution framework aware of switch ON. The aftereffect of our test with dampness is portrayed.

As ultrasonic sensors deal with the standard of resonation, research its appearance on changed obstacles is fundamental. The assessment cycle begins with the microcontroller sending the high-level heartbeat to the sensor trigger pin to start going, then the sensor awards ultrasonic sign with 40 kHz and 450µs and thereafter clutch address the rising edge yield by resonation port from 150µs to 25ms, dependent upon assessed stretch If an occurrence with no deterrent (no indication reflected) should occur, it holds it together for a few milliseconds until restarting transmission. To detect an obstacle, the ultrasonic distance sensor uses duration of the flight (TOF) - the yield is a modernized beat that takes the amount of time for the sound to arrive at the quarry and return before they hear the sign. By demanding impediments of up to 50 m, the contraction was constant. The moistness significance water pointer began with two wires what when interfaced with water would flag. They should contact the water before they can recognize the water, which is the explanation they were set under the stick. The Zig-Bee helps as the battery power is checked as it's worked in different modes. Data speed of 250kbps proper for irregular similarly as center two-course transmissions of data. Energy usage even at lower bandwidth. It covers 10 to 100 meters inside a scope as Bluetooth and Wi-Fi.

Fig.3. Hardware walk assistance stick

S/No	Distance (Meters)	Alarm
1	0.5055	ON
2	0.6036	ON
3	1.1780	ON
4	1.5732	ON
5	1.8288	ON
6	1.9700	ON
7	2.0076	ON
8	2.8850	ON
9	3.0550	OFF
10	3.7400	OFF

Table 1:	Ultrasonic	Sensor	Test	Result
----------	------------	--------	------	--------

Table 2: Water Detection Test Result

International Conference on Recent Trends in Computing (ICRTCE-2021)

Journal of Physics: Conference Series

IDP Publishing 1979 (2021) 012065 doi:10.1088/1742-6596/1979/1/012065

Probes	No Water Detected	Water Detected
Probe 1	0v, the buzzer is inactive. The transistor is off.	5v, the buzzer came ON. The transistor is forward bias.
Probe 2	0v, the buzzer is inactive. The transistor is off.	5v, the buzzer came ON. The transistor is forward bias.

4. Experiment Result

Ultrasonic sensors act on the reverberation law, focusing their presence on a modified deterrent is very necessary. The estimation cycle starts as soon as the microcontroller communicates. The 10 μ s increased heart beat level given as a input to the trigger pin of the sensor to start running (T1), at that point, the sensor illustrate 40 kHz and 450 μ s (T2) ultrasonic signals and then hold back to capture the reverberation port (T3) rising edge yield of 150 μ s.:25ms, depending on the estimated distance as shown in Figure 3. If no impediment (no sign reflected) occurs, it holds up to 38ms before it restarts transmission. To recognize snag, the ultrasonic distance sensor uses the season of flight (TOF) - the yield is a computerized beat that takes the amount of time for the sound to hit the target and return before the signal is heard. With deterrent identification of up to 2 m, the gadget was accurate. The water identifier, which consists of two wires that would signal when interacting with water. Before they can recognize the water, they must contact the water, which is the reason they have been placed under the stick. Invisible people use the Google map to advance by voice command to select the destination, so without the assistance of others, the path they take is much easier.

5. Conclusion

It is useful and complex now that this review finds that the arrangement and execution of a sharp walking stick has been accomplished for the apparently tried individuals. The Brilliant stick is likely to be a fundamental assertion for the refreshing age of extra supporting contraptions to help outwardly challenged individuals to explore both inside and away safely. This structure is convincing and desirable. This system offers a simple, strong, flexible, low power usage and enthusiastic response for exploring with the obvious short response time. Regardless of the way that the structure is hard-set up with sensors and various parts, it's more modest. Through distant accessibility between the structure components, the farther angle of this system can be redesigned, thus extending the scope of the ultrasonic sensor and executing a development to deal with the speed of prevention proceedings. Apparently weakened and ostensibly tried individuals were on top of our needs in all developing countries while upgrading a particularly empowering course of action. In this work, the constructed device is simply fit for perceiving impediments and moisture. Thusly, using ultrasonic sensors, Arduino Uno, and various devices, a dominant contraption can be manufactured. For ease of use and solace, a vibrator may also be added. In the upgrade, further changes will be added to improve the system's implementation. The power source can be given from sun situated energy through batteryfueled batteries. These include an overall arrangement procedure to find the customer's territory using the GPS and GSM modules to link the region to a relative or gatekeeper using Google map methods. It should moreover help wide fluctuating holds for adaptable usage. The system with sensors and different portions is hard-set up, it's more modest. Farther pieces of this structure can be begun through distant organization between the system portions, likewise. Extend the scope of the ultrasonic sensor and complete progress in choosing the speed at which obstacles are pushed. While developing a particularly empowering game plan, in all horticultural countries, apparently impaired and ostensibly tried individuals were on top of our needs. In this work, the device created is simply fit for perceiving obstructions and sogginess. Thus, using ultrasonic sensors, Arduino Uno, and different devices, an unparalleled device can be assembled. For ease of use and comfort, a vibrator may similarly be added. Later, further improvements will be added to enhance the system's display

References

- [1] M. S. Nowak and J. Smigielski, "The Prevalence and Causes of Visual Impairment and Blindness among Older Adults.
- [2] R. Swetha, S. Rajandekar, S. Laddha "Smart White Cane An Elegant and Economic Walking Aid." American Journal of Engineering Research. Vol. 3, number 10, pp. 84-89, 2014.I. S. Jacobs and C. P. Bean, "Fine particles, thin films and exchange anisotropy," in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New York: Academic, 1963, pp. 271–350.
- [3] C.S. Kheriayal, Y.A. Dabhade, S.K Kadam., S.D. Dhamdhereand
- [4] A.V. Deshpande "An Intelligent Walking Stick for the Blind."
- [5] International Journal of Engineering Research and General
- [6] Science, vol. 3, number 1, pp. 1057-1062, 2015.
- [7] B.G. malaya, B.S. Preethi and B.R. Shruthi "Smart Electronic Stick for Visually Impaired." InternationalResearch in Science, Engineering and Technology, vol. 4, number 7, pp. 6389-6395, 2015.
- [8] a. O. Olakanmi, "A Multidimensional Walking Aid for Visually Impaired Using Ultrasonic Sensors Network with Voice Guidance", International Journal of Intelligent Systems and Applications (IJISA), vol. 6, number 8, pp. 53-59, 2014. DOI: 10.5815/ijisa.2014.08.06.
- [9] E. J. Chukwunazo and G. M. Ongiye "Design and Implementation of Microcontroller Based Mobility Aid for Visually Impaired People." International Journal of Science and Research. Vol. 5, issue 6, pp. 680-686, 2015.
- [10] G. Prasanthi and P. Tejaswitha "Sensor Assisted Stick for the Blind People." Transactions on Engineering and Sciences, vol. 3,
- [11] K Rajkumar, K Thejaswini , R Srinithi "Ghosting based verge heedful System"International Journal of Engineering and Research, Vol-3, 2018

5/25/22, 12:30 PM

Smart Sprinkler System Using Raspberry Pi | IEEE Conference Publication | IEEE Xplore

		Communication Software and Networks
Abstract	法	Published: 2011
Document Sections	Downl PDF	Real-time system for monitoring activity among the elderly using an RF SoC device with triaxial accelerometer data over a
I. Introduction	Abstract:Nowadays the agricultural sector, which is considered as the backbone of the Indian Economy, that contributes to 25% of the country's GDP,	with that a deceleration of the data over a wireless sensor network
II. Components	has been declining due to deple View more	Workshop Series on RF and Wireless
III. Literature Review	▶ Metadata	Applications (IMWS-Bio2014)
IV. Proposed	Abstract: Nowadays the agricultural sector, which is considered as the backbone of the	Published: 2014
System	Indian Economy, that contributes to 25% of the country's GDP, has been	Show More
V. Results and Tabulations	declining due to depletion of water and natural fertilizers, inadequate use of technology in agriculture fields, unreliable and varying weather patterns. The	
Show Full Outline	proposed smart sprinkler system consists of a combination of Raspberry Pi and wireless sensors which are interconnected by webpage. Once the information is collected by sensor, it is then processed by the Raspberry Pi module, further	
Authors	mediated to the farmer through a webpage. With the help of this smart system, farmer will be able to know about the field conditions such as meisture content.	
Figures	of the soil, presence of fertilizer in the soil, pH of the soil, nitrogen content in the soil, etc. for the efficient growth of crops. This paper mainly focuses on the real	
References	time monitoring and observation of field conditions with the help of efficient and	

economical sprinkler system. Every atmospheric change in the agricultural land can be sensed and intimated to the farmer, so that he can automate necessary

changes in the irrigation pattern. Even the landowner, who employs poor

https://ieeexplore.ieee.org/document/9767981

Keywords

Show More

2011 IEEE 3rd International Conference on

5/25/22.	12:30	PМ
0, 20, 22,	12.00	

More Like This

Smart Sprinkler System Using Raspberry Pi | IEEE Conference Publication | IEEE Xplore

farmers to grow the crops in his land, can get to know about the status even
when he is residing anywhere in the world with the help of the internet.

Published in: 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT)

	Date of Confe 2022 Date Added t 2022 ISBN Inform	erence: 10-11 March o IEEE <i>Xplore</i> : 12 May mation:	DOI: 10.1109/IC Publisher: Conference	3IOT53935.2022.9767 IEEE e Location: Chennai,	981 India	
	I. Introduct	ion s who are irrigating the fie	Contents	er may		
	sometimes This propos process the the informat	irrigate quantities of wate ed smart Signinkleto Systeli data collected by the va tion to the user.	er more than inuææædRæ irious sensor	the required. spberry Pi to s and transmit		
	Authors				~	
	Figures				~	
	References				~	
	Keywords				~	
IEEE Personal Acc	count	Purchase Details	I	Profile Information		Need Help?
CHANGE		PAYMENT OPTIONS		COMMUNICATIONS		US & CANADA: +1 800 678

CHANGE USERNAME/PASSWORD VIEW PURCHASED DOCUMENTS

PREFERENCES **PROFESSION AND** EDUCATION

TECHNICAL INTERESTS

4333 WORLDWIDE: +1 732 981 0060

CONTACT & SUPPORT

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | IEEE Ethics Reporting 🗹 | Sitemap | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

© Copyright 2022 IEEE - All rights reserved.

IEEE	Account
------	---------

Purchase Details

» Change Username/Password

» Update Address

» Payment Options

» Order History

Profile Information

» Communications Preferences

» Profession and Education

Need Help?

» US & Canada: +1 800 678 4333

» Worldwide: +1 732 981 0060

https://ieeexplore.ieee.org/document/9767981

Follow f in 🔰 Smart Sprinkler System Using Raspberry Pi | IEEE Conference Publication | IEEE Xplore

» View Purchased Documents

» Technical Interests

» Contact & Support

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2022 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions. Sample E-quiz conducted

Formative Assessment for Gap Analysis

Name: Unit iv M&IDescription: Unit iv CRO DSODate: 18/May/2022Sent to: 49 studentsDuration: 46 min

Dr B. Meenakshi Professor EEE

Topic wise analytics

Topic Name	No of Questions	Performance of Students
Digital CRO	5	53%
Analog and digital storage oscilloscope	10	62.5%

Section wise analytics

Section Name	Marks	No of Questions	Average Percentage	Average Time Spent (sec)
B section	1	15	59%	248

Blooms Analysis

Top 5 Performers

Roll No	Name	Blooms Level	% Rightly Answered
SEC20EE017	SUBIKSA G	K3	100
SEC20EE081	DHIVYASHRI M	K3	100
SEC20EE089	KARISH LEELA M	K3	100
SEC20EE090	SANDHIYA V	K3	93
SEC20EE037	PRABAKARAN M	КЗ	87

Question wise Analysis

Student Results

Student	В	section		Total Time Takan	Total Marka Dercentage	
	Percentage %	Marks	Time		TOTAL MAIKS	Feicentage %
SURIYAN N A SEC20EE007	67	10	05m 07s	05m 07s	10	67

GOKUL J SEC20EE008	67	10	02m 24s	02m 24s	10	67
KARTHIKEYAN M SEC20EE011	80	12	02m 02s	02m 02s	12	80
SRI ARI PRIYA A SEC20EE012	47	7	02m 17s	02m 17s	7	47
YUVARAJ N SEC20EE016	40	6	01m 18s	01m 18s	6	40
SUBIKSA G SEC20EE017	100	15	02m 08s	02m 08s	15	100
R SURYA SEC20EE021	67	10	02m 28s	02m 28s	10	67
SELVAPRIYA V SEC20EE022	47	7	02m 11s	02m 11s	7	47
PRABAKARAN M SEC20EE037	87	13	01m 03s	01m 03s	13	87
MAGESH V SEC20EE039	87	13	06m 33s	06m 33s	13	87
AMOSE DAVID A SEC20EE041	80	12	49s	49s	12	80
SHRIRANJANI J SEC20EE042	53	8	02m 01s	02m 01s	8	53
SWAMINATHAN R SEC20EE043	47	7	52s	52s	7	47
PAULINA J SEC20EE044	33	5	01m 45s	01m 45s	5	33
SARANRAJ A K SEC20EE052	80	12	01m 07s	01m 07s	12	80
SANTHOSH KUMAR M SEC20EE053	73	11	04m 28s	04m 28s	11	73
JANANI E SEC20EE055	67	10	06m 42s	06m 42s	10	67
JEEVA PRASAD R SEC20EE057	80	12	09m 13s	09m 13s	12	80
AJITHASRI R SEC20EE059	80	12	53s	53s	12	80
PAVITHRA P SEC20EE062	20	3	06m 38s	06m 38s	3	20
MOHAMED AZEEM AFFAN A SEC20EE063	33	5	28s	28s	5	33
SUDHARSAN M SEC20EE066	73	11	07m 47s	07m 47s	11	73
EVANSINGH M SEC20EE067	80	12	03m 27s	03m 27s	12	80
YOKESWARAN S SEC20EE072	73	11	08m 53s	08m 53s	11	73
MADHAVAN P D	33	5	46s	46s	5	<u></u>

SEC20EE074						33
MUKESHWARAN A SEC20EE075	67	10	25m 31s	25m 31s	10	67
MURALIDHARAN P SEC20EE078	20	3	05m 17s	05m 17s	3	20
DHIVYASHRI M SEC20EE081	100	15	01m 36s	01m 36s	15	100
SRIMATHI K SEC20EE083	80	12	50s	50s	12	80
VIJAY S SEC20EE085	60	9	08m 31s	08m 31s	9	60
AMSAVARTHINI R SEC20EE086	33	5	10m 51s	10m 51s	5	33
KAVINESH K SEC20EE087	80	12	18m 13s	18m 13s	12	80
PEROLI RIKTHISH B SEC20EE088	40	6	01m 55s	01m 55s	6	40
KARISH LEELA M SEC20EE089	100	15	01m 12s	01m 12s	15	100
SANDHIYA V SEC20EE090	93	14	01m 05s	01m 05s	14	93
MANIKANDAN S SECL21EE01	27	4	30s	30s	4	27
RAWINRAJ K SECL21EE09	7	1	31s	31s	1	7
SARAN PRAKASH S P SECL21EE11	27	4	02m 14s	02m 14s	4	27
GUNESHWAR M SECL21EE16	20	3	32s	32s	3	20
PADMANABHAN N D SECL21EE18	27	4	03m 36s	03m 36s	4	27

Answers

B section

Q1. Which of the following measurements can be made using Lissajous figures ?

1. Frequency

2. Phase difference

3. Time interval between pulses.

4. Pulse width

5. Fundamental and higher harmonic components.

Select the correct answer using the code given below:

Level - Understand

1 and 2

2 and 3

55%

3 and 4			
			12%
4 and 5			
			18%

Q2. A Lissajous pattern, as shown in the figure, is observed on the screen of a CRO when voltages of frequencies are applied to the X and Y plates respectively. f_x : f_y , is then equal to

Level - Apply

3:2	22%
1:2	45%
2:3	22%
2:1	8%

Q3. The two inputs of a CRO are fed with two stationary periodic signals. In the X-Y mode, the screen shows a figure which changes from ellipse to circle and back to ellipse with its major axis changing orientation slowly and repeatedly. The following inference can be made from this.

45%
8%
30%
_
15%
4

 $\ensuremath{\mathsf{Q4}}\xspace$. In dc coupling mode, CRO can measure

	Level - Remember
ac voltage only.	
	8%
dc voltage only.	
	8%
both ac and dc voltages.	
	82%

Q5. A compensated probe of a CRO contains which of the following?

1. An amplifier

2. R-C network

3. Only resistive network

4. Only capacitive network

Select the correct answer using the code given below:

Level - Understand

1 and 2 only.	22%
2 only.	10%
3 only.	
	10%
4 only.	
	52%

Level - Understand

Analog storage	
	25%
digital storage	
	35%
both analog and digital storage	
	30%
sampling	
	5%

Q7. In analogue storage oscilloscopes, cathode ray tubes contain one or more secondary electron guns called _____.

Level - Understand

emission guns	
	10%
absorption guns	
	10%
flood guine	
noou guns	72%
None of the mentioned	
	5%

Q8. analogue storage oscilloscopes are applicable for_____.

	Level - Understand
Long period waveforms	
	12%
Displaying single shot waveforms	0%
storage facility on the scope where it can display the trace for longer	
	12%
all of the mentioned	70%
	72%

Q9. The function used to display a stable waveform on DSO screen is_____.

Level - Apply

Level - Apply

Triggering function	
	25%
Saving a setup function	
	5%
Auto set function	62%
Recalling a setup function	
	5%

Q10. Sampling of the highest and lowest values of the input signal in DSO is done due to_____(in acquisition mode).

	Level - Apply
Peak detect mode	
	75%
Average mode	
	12%
Sample mode	
Sample mode	8%
Auto mode	20
—	Ζ7ο

Q11. The overall operation of DSO is controlled by using_____.

diodes and transistors	20%
discrete components	
	5%
ICs and transistors	10%
microprocessors	

Level - Apply

upload to computer	
_	2%
data acquasition	
	72%
storage	8%
data display	
	12%

Q13. Pick up the advantage of the DSO from the following?

Level - Understand

Stores digital data for later viewing	65%
Make measurement of digital data	
	8%
Electron beam moves across the screen	
	12%
Process signals in analog format	
	10%

Q14. In DSO, the processed data of input signal voltage be stored in_____

	Level - Apply
Screen display	
	5%
Digital to analog converter	
	10%
Analog to digital converter	
	12%
Memory	
	68%

.___.

Level - Understand

Inverter circuit	
	20%
Rectifier circuit	
	8%
Analog to Digital converter circuit	
	50%
Digital to Analog converter circuit	
	18%

Formative Assessment for Gap Analysis

Name: Unit 1 testDescription: Unit 1, characteristics of measuring instruments-retestDate: 26/Mar/2022Sent to: 49 studentsDuration: 46 min

Dr B. Meenakshi Professor EEE

Topic wise analytics

Topic Name	No of Questions	Performance of Students
Static and dynamic characteristics	15	57.47%

Section wise analytics

Section Name	Marks No of Questions		Average Percentage	Average Time Spent (sec)	
B section	1	15	57%	447	

Blooms Analysis

Top 5 Performers

Roll No	Name	Blooms Level	% Rightly Answered
SEC20EE017	SUBIKSA G	K2	100
SEC20EE022	SELVAPRIYA V	K2	100
SEC20EE081	DHIVYASHRI M	K2	100
SEC20EE086	AMSAVARTHINI R	K2	100
SEC20EE089	KARISH LEELA M	K2	100

Question wise Analysis

Student Results

Ctudent	B section		Total Timo Takan (aaa)	Total Marka	n onconto no 94	
Student	Percentage %	Marks	Time (sec)	Total Time Taken (Sec)	TOLATIVIAIKS	percentage »
SURIYAN N A SEC20EE007	40	6	201	201	6	40
GOKUL J SEC20EE008	13	2	251	251	2	13

KARTHIKEYAN M SEC20EE011	93	14	414	414	14	93
YUVARAJ N SEC20EE016	40	6	71	71	6	40
SUBIKSA G SEC20EE017	100	15	179	179	15	100
SELVAPRIYA V SEC20EE022	100	15	165	165	15	100
ABINAYA R SEC20EE024	67	10	1572	1572	10	67
KALAIVANI K SEC20EE028	53	8	827	827	8	53
PRABAKARAN M SEC20EE037	87	13	186	186	13	87
MAGESH V SEC20EE039	87	13	738	738	13	87
SHRIRANJANI J SEC20EE042	67	10	1527	1527	10	67
PAULINA J SEC20EE044	27	4	525	525	4	27
SARANRAJ A K SEC20EE052	67	10	602	602	10	67
JANANI E SEC20EE055	60	9	857	857	9	60
JEEVA PRASAD R SEC20EE057	93	14	769	769	14	93
AJITHASRI R SEC20EE059	20	3	58	58	3	20
MOHAMED AZEEM AFFAN A SEC20EE063	20	3	31	31	3	20
EVANSINGH M SEC20EE067	93	14	425	425	14	93
MUKESHWARAN A SEC20EE075	73	11	1215	1215	11	73
MURALIDHARAN P SEC20EE078	53	8	508	508	8	53
DHIVYASHRI M SEC20EE081	100	15	148	148	15	100
SRIMATHI K SEC20EE083	20	3	648	648	3	20
AMSAVARTHINI R SEC20EE086	100	15	284	284	15	100
PEROLI RIKTHISH B SEC20EE088	7	1	45	45	1	7
KARISH LEELA M SEC20EE089	100	15	109	109	15	100

SANDHIYA V SEC20EE090	0	0	30	30	0	0
MANIKANDAN S SECL21EE01	33	5	125	125	5	33
VISHNU S SECL21EE15	27	4	364	364	4	27
PADMANABHAN N D SECL21EE18	27	4	101	101	4	27

Answers

B section

Q1. The set of criteria defined for the instruments, which are changes rapidly with time, is called as _____

	Level - Remember
Static characteristics	
	10%
Dynamic characteristics	
	59%
Both static and dynamic characteristics	
	17%
None of the mentioned	
	10%

Q2. The quickness with which a measurement system responds to changes in the measured quantity is defined as a ______

Level - Remember

Speed of response	
	72%
Measuring lag	
	10%
Fidelity	
	0%
Dynamic arror	
	100
	10%

Q3. In ______ the response of the measurement system begins after a dead time after the application of the input

Level - Remember

Time delay lag	
	69%
Fidelity	
	3%
Dynamic error	
	17%

Q4. Dynamic error is defined as the difference between the _____

Level - Remember

True value of the quantity changing with time	
	7%
Value indicated by the measurement system if no static error is assumed	
	3%
Measurand quantity	
	10%
	10%
Both I rue value of the quantity changing with time and Value indicated by the measurement system if no static error is assumed	
	66%
All of the mentioned	
	7%

$Q5. \ \mbox{The smallest change in measured variable to which an instrument will respond is called$

	Level - Remember
accuracy	
	14%
resolution	
	59%
precision	
	3%
sensitivity	
	17%

the change in the same reading when input is increased and then decreased	
	69%
the reliability of the instrument	
	21%
the repeatability of the instrument	
	0%
the inaccuracy due to change in temperature	
	3%

$\ensuremath{\mathsf{Q7}}$. The fact as to how closely the instrument reading follows the measured variables is called the

	Level - Remember
accuracy	
	14%
precision	
	21%
fidelity	
	55%
sensitivity	
	3%

$\ensuremath{\mathsf{Q8}}\xspace.$ An higher scale ammeter is used to measure too low current. The measurement would have low

	Level - Understand
precision	
	14%
accuracy	
	3%
resolution	
	14%
all of the mentioned	
	66%

the life of the instrument	
	10%
the extent over which the characteristics remain linear	
	41%
degree to which repeatability continues to remain within apositied limite	
	24%
all of the mentioned	17%

Q10. Undesirable charcteristics of measurement system are

Le	evel - Remember
uracy and repeatability	
	7%
tic error	
	14%
t and dead zone	1 49/
	14%
h static error and drift and dead zone	
	59%

$Q11. \ \mbox{The static error band of an instrument doesn't include$

	Level - Understand
Non-linearity	
	17%
electrical drift	
	45%
hystersis in the instrumnet	
	24%
none of the mentioned	
	7%

The time required by an instrument to begin to respond to a change in the measurand	
	28%
The time required by an instrument to warm up initially	
	7%
The largest change of input qunatity for which there is no output of the instrument	
	48%
none of the mentioned	
	10%

Q13. Which of the following statments is true for a measuring instrument?

Level - Understand

Level - Remember

If it is precise, it is accurate	
	17%
If it is linaer, it is sensitive	
	0%
If it has a digital display,it is accurate	
	17%
If it uses null balance technique, it has high input impedanace	
	59%

Q14. Resolution of an instrument is

The minimum of quantity it can measure	
	66%
The maximum of quantity it can measure	
	7%
The maximum non-linearity	
	10%
ability to distinguish polarity	
	14%

Level - Understand

low accuracy	
	24%
low precision	
	52%
high accuracy but low precision	
	7%
high precision but low accuracy	
	10%

Formative Assessment for Gap Analysis

Name	: Wattmeter
Description	: Wattmeter
Date	: 08/Apr/2022
Sent to	: 49 students
Duration	: 31 min

Dr B. Meenakshi Professor EEE

Topic wise analytics

Topic Name	No of Questions	Performance of Students
Construction and Operation of dynamometer wattmeter	6	100%
Single-phase dynamometer wattmeter	1	100%
Errors in dynamometer wattmeter	1	100%
Induction wattmeters	2	50%

Section wise analytics

Section Name	Marks	No of Questions	Average Percentage	Average Time Spent (sec)
В	1	10	90%	546

Blooms Analysis

Top 5 Performers

Roll No	Name	Blooms Level	% Rightly Answered
SEC20EE017	SUBIKSA G	K2	90
SEC20EE022	SELVAPRIYA V	K2	90
SEC20EE081	DHIVYASHRI M	K2	90
SEC20EE089	KARISH LEELA M	K2	90

Question wise Analysis

Student Results

Student	В			Total Time Taken	Total Marke	Percentage %
Student	Percentage %	Marks	Time	Total Time Taken		reiceiltage %

SUBIKSA G SEC20EE017	90	9	09m 49s	09m 49s	9	90
SELVAPRIYA V SEC20EE022	90	9	01m 25s	01m 25s	9	90
DHIVYASHRI M SEC20EE081	90	9	14m 11s	14m 11s	9	90
KARISH LEELA M SEC20EE089	90	9	11m 02s	11m 02s	9	90

Answers

В

Q1. How many coils are there in a wattmeter?

Level- Remember

Q2. In an electrodynamometer type wattmeter

Level - Remember

The current coil is made fixed	
	100%
The pressure coil is fixed	
	0%
Path the soil are fixed	
	0.
	0%
Both the coils are movable	
	0%

Q3. The pressure coil of a wattmeter consists of

Level - Remember

Less number of turns of fine wire	
	0%
Less number of turns of thick wire	
	0%
More number of turns of thick wire	
	0%

Q4. Wattmeter is an instrument which measures

	Level - Remember
Instantaneous power	
	0%
Average power	100%
Apparent power	
	0%
Reactive power	
	U%

$\ensuremath{\mathsf{Q5}}$. The pressure coil of a dynamometer type wattmeter is

	Level - Remember
Highly inductive	
	0%
Highly resistive	100%
Purely resistive	
	0%
Purely inductive	
	0%

Q6. The pressure coil of a wattmeter should be on the supply side of the current coil when
supply voltage is high	0%
load impedance is low	
	0%
load impedance is high	100%
	100%

Q7. Which type of wattmeter can not be used for both A.C& D.C.?

	Level - Remember
Dynamometer type	
	0%
Electrostatic type	
	0%
Induction type	
	0%
None of the mentioned	
	100%

Q8. The type of wattmeter commonly used for measurement of power in AC circuits is

	Level - Remember
Moving iron type	
	0%
Thermocouple type	
	0%
Rectifier type	
	0%
Dynamometer type	100%
	100 %

Q9. In dynamometer type of wattmeter, which of the coil is split up into two parts?

current coil	
	100%
both the pressure coil and current coil	
	0%
None of the mentioned	
	0%

Q10. In Induction wattmeters, the instantaneous value of deflecting torque is ______ voltage under measurement

	Level - Understand
directly proportional to	
	0%
inversely proportional to	
	0%
directly proportional to the square of	
	100%
inversely proportional to the square of	
	0%

0%

Nasscom Futureskills

IIT Bombay spoken tutorials

Electrical And Electronics engineering

SI. No First Name

Last Name

Course Name Certificate

Date of completion

1	ABHINAYA	KUMAR	Arduino	87.5% - Certificate	10.01.2022
2	ABINAYA	VARADHARAJAI	Arduino	85.0% - Certificate	10.01.2022
3	AISHWARYA	SURESH	Arduino	90.0% - Certificate	10.01.2022
4	ARCHANA	RAVICHANDRA	Arduino	92.5% - Certificate	10.01.2022
5	arish	V	Arduino	82.5% - Certificate	10.01.2022
6	BALASAKTHISHWARAN	MURUGESAN	Arduino	82.5% - Certificate	10.01.2022
7	BOOBALAN	MANOHARAN	Arduino	85.0% - Certificate	10.01.2022
8	DAKSHINA	RAJU	Arduino	100.0% - Certificate	10.01.2022
9	DARUNKUMAR	GOPALAKRISH	Arduino	80.0% - Certificate	10.01.2022
10	DHANYA	KRISHNAMACH	Arduino	100.0% - Certificate	10.01.2022
11	GANDHI	SIVAKUMAR	Arduino	75.0% - Certificate	10.01.2022
12	GOKUL	MUTHUVEL	Arduino	90.0% - Certificate	10.01.2022
13	HARI PRADOSH	SUNDARARAJA	Arduino	87.5% - Certificate	10.01.2022
14	JANANI	JAYARAJ	Arduino	95.0% - Certificate	10.01.2022
15	JANANI	SENTHIL KUAM	Arduino	75.0% - Certificate	10.01.2022
16	KAMALAKANNAN	BAKTHAVATCH	Arduino	95.0% - Certificate	10.01.2022
17	KARTHICK	ANANDHAN	Arduino	82.5% - Certificate	10.01.2022
18	KAVIPRASAD	PANDURANGAN	Arduino	90.0% - Certificate	10.01.2022
19	KRISHNA KUMAR	PONNAMBALAN	Arduino	87.5% - Certificate	10.01.2022
20	MAHENDRA VARMA SALIYAN	THIRUMAL	Arduino	77.5% - Certificate	10.01.2022
21	NAFEEZA BEGUM	AJEES BASHA	Arduino	77.5% - Certificate	10.01.2022
22	NISHANTHINI	RAJENDRAN	Arduino	92.5% - Certificate	10.01.2022
23	PARTHIBAN	DHAMOTHARAN	Arduino	75.0% - Certificate	10.01.2022
24	PRADEESH	THIRUGNANAM	Arduino	92.5% - Certificate	10.01.2022
25	PRIYADARSHAN	PRAKASH	Arduino	80.0% - Certificate	10.01.2022
26	ROHINTH	PALANIYAPPAN	Arduino	92.5% - Certificate	10.01.2022
27	ROSHINI	SARAVANAN	Arduino	82.5% - Certificate	10.01.2022
28	SANJAY	RAVINDRAN	Arduino	82.5% - Certificate	10.01.2022

29 SARVESH	GOVINDARAJ	Arduino	77.5% - Certificate	10.01.2022
30 SATHMIKAN	ILANGO	Arduino	87.5% - Certificate	10.01.2022
31 SHRIKANTH	SIVAKUMAR	Arduino	85.0% - Certificate	10.01.2022
32 SIDHARTH	ANANDHAKUM/	Arduino	95.0% - Certificate	10.01.2022
33 SOUMYA	Μ	Arduino	100.0% - Certificate	10.01.2022
34 SUNDARA NARAYANAN	ARUL	Arduino	85.0% - Certificate	10.01.2022
35 SURIYA	MURUGANANTI	Arduino	77.5% - Certificate	10.01.2022
36 TEENA	KUMAR	Arduino	82.5% - Certificate	10.01.2022
37 THARUNKUMAR	PANNEER SELV	Arduino	72.5% - Certificate	10.01.2022
38 VAISHNAV	MURRUGHADA:	Arduino	80.0% - Certificate	10.01.2022
39 VENKATESHWARAN	ANNADURAI	Arduino	95.0% - Certificate	10.01.2022
40 VIKAS	SENTHIL KUMA	Arduino	77.5% - Certificate	10.01.2022
41 VISVAK	SAKTHIVEL	Arduino	90.0% - Certificate	10.01.2022
42 VIVEKA	UGANANTHAN	Arduino	82.5% - Certificate	10.01.2022
43 YOHARAJ A	ANBALAGAN	Arduino	77.5% - Certificate	10.01.2022
44 ABINAYA	RAVI	Arduino	77.5% - Certificate	10.01.2022
45 AJITHASRI	RAJENDRAN	Arduino	92.5% - Certificate	10.01.2022
46 AMOSE DAVID	ARUN DAVID	Arduino	80.0% - Certificate	10.01.2022
47 AMSAVARTHINI	RAMAMOORTH	Arduino	90.0% - Certificate	10.01.2022
48 DHIVYASHRI	MUTHUKUMAR	Arduino	92.5% - Certificate	10.01.2022
49 EVANSINGH	MARIAARULRA	Arduino	92.5% - Certificate	10.01.2022
50 GOKUL	JANAKIRAMAN	Arduino	95.0% - Certificate	10.01.2022
51 JAI SURIYA	KARTHIKEYAN	Arduino	92.5% - Certificate	10.01.2022
52 JANANI E	ELANCHEZHIYA	Arduino	100.0% - Certificate	10.01.2022
53 JEEVA PRASAD	RAVI	Arduino	95.0% - Certificate	10.01.2022
54 KALAIVANI	KUMAR	Arduino	90.0% - Certificate	10.01.2022
55 KARISH LEELA	MANIVANAN	Arduino	77.5% - Certificate	10.01.2022
56 KARTHIKEYAN	MURUGESAN	Arduino	92.5% - Certificate	10.01.2022
57 KAVINESH	KUMAR	Arduino	67.5% - Certificate	10.01.2022
58 LEENA	VENKATACHAL	Arduino	100.0% - Certificate	10.01.2022
59 MAGESH	VENKATESAN	Arduino	87.5% - Certificate	10.01.2022

60 MOHAMED AZEEM AFFAN	AZEES RAHMAN	Arduino	85.0% - Certificate	10.01.2022
61 MUKESHWARAN	ARUN	Arduino	95.0% - Certificate	10.01.2022
62 MURALIDHARAN	PUSHPARAJ	Arduino	82.5% - Certificate	10.01.2022
63 NAVEEN	MURALIMOHAN	Arduino	65.0% - Certificate	10.01.2022
64 PAULINA	J	Arduino	95.0% - Certificate	10.01.2022
65 PAVITHRA	POONGAVANAN	Arduino	77.5% - Certificate	10.01.2022
66 PEROLI RIKTHISH	BALASUNDARA	Arduino	82.5% - Certificate	10.01.2022
67 PRABAKARAN	MOHAN	Arduino	82.5% - Certificate	10.01.2022
68 SANDHIYA	VIJAYAKUMAR	Arduino	90.0% - Certificate	10.01.2022
69 SANTHOSH KUMAR	MAYAVELU	Arduino	82.5% - Certificate	10.01.2022
70 SARANRAJ	KUMAR	Arduino	72.5% - Certificate	10.01.2022
71 SELVAPRIYA	VELMURUGAN	Arduino	92.5% - Certificate	10.01.2022
72 SHRIRANJANI	JAYANTHAN	Arduino	95.0% - Certificate	10.01.2022
73 SRI ARI PRIYA	ARI BASKER RA	Arduino	87.5% - Certificate	10.01.2022
74 SRIMATHI	KUMASTHA	Arduino	75.0% - Certificate	10.01.2022
75 SUBIKSA	GNANADURAI	Arduino	82.5% - Certificate	10.01.2022
76 SUDHARSAN	MAHESWARAN	Arduino	95.0% - Certificate	10.01.2022
77 SURIYAN	NARAYANAN	Arduino	85.0% - Certificate	10.01.2022
78 surya	ramesh	Arduino	75.0% - Certificate	10.01.2022
79 SURYA VIGNESHWAR	CHANDRASEKA	Arduino	95.0% - Certificate	10.01.2022
80 SWAMINATHAN	RANGARAJAN	Arduino	72.5% - Certificate	10.01.2022
81 THARUN	DHINAKARAN	Arduino	97.5% - Certificate	10.01.2022
82 VIJAY	SEKAR	Arduino	92.5% - Certificate	10.01.2022
83 YOKESWARAN	SIVAKUMAR	Arduino	95.0% - Certificate	10.01.2022
84 YUVARAJ	NANDAKUMAR	Arduino	77.5% - Certificate	10.01.2022
85 ABHISHEK	PATHMANABAN	Arduino	95.0% - Certificate	10.01.2022
86 ABISHEK	SEKAR	Arduino	90.0% - Certificate	10.01.2022
87 DEVADATHAN	SREEKUMAR	Arduino	87.5% - Certificate	10.01.2022
88 DEVA SARAVANAN	SUGUMAR	Arduino	87.5% - Certificate	10.01.2022
89 DHEEPTHA	DURAIRAJ	Arduino	87.5% - Certificate	10.01.2022
90 ELAKIYA	1	Arduino	85.0% - Certificate	10.01.2022

91	GNANAPRAKASH	RAJASEKARAN	Arduino	95.0% - Certificate	10.01.2022
92	JANANI	THIRUMALAI	Arduino	92.5% - Certificate	10.01.2022
93	JAYAPRAKASH	VENKATESAN	Arduino	90.0% - Certificate	10.01.2022
94	JAYENDAR	MANIVEL	Arduino	92.5% - Certificate	10.01.2022
95	KIRAN	SHANMUGAM	Arduino	100.0% - Certificate	10.01.2022
96	KRISHNA PRIYA	HARIDAS	Arduino	72.5% - Certificate	10.01.2022
97	MAHESH	JEEVANANDAM	Arduino	100.0% - Certificate	10.01.2022
98	MULLAI KRISHNA	MURUGESAN	Arduino	92.5% - Certificate	10.01.2022
99	NANDHINI	SEKAR	Arduino	95.0% - Certificate	10.01.2022
100	NIKARIGA	RAVICHANDRA	Arduino	60.0% - Certificate	10.01.2022
101	NITHISH	SUBRAMANI	Arduino	100.0% - Certificate	10.01.2022
102	RETESH	MURALI	Arduino	100.0% - Certificate	10.01.2022
103	SAIGANESH	SIVASHANKAR	Arduino	95.0% - Certificate	10.01.2022
104	SAISUDHA	G	Arduino	95.0% - Certificate	10.01.2022
105	SAKTHI VIGNESH	RAVICHANDRA	Arduino	95.0% - Certificate	10.01.2022
106	SOMESHWARAN	BOOVARAGAVA	Arduino	82.5% - Certificate	10.01.2022
107	SOUNDRA RAJAN	GOPALA KRISH	Arduino	90.0% - Certificate	10.01.2022
108	SRINIDHI SRINIVASAN	SRINIVASAN M	Arduino	95.0% - Certificate	10.01.2022
109	SRIVATSON	NITHYANANDAN	Arduino	85.0% - Certificate	10.01.2022
110	SWETHA	S	Arduino	92.5% - Certificate	10.01.2022
111	RETHICK	THIRUMALAI	Arduino	90.0% - Certificate	10.01.2022
112	VARSNI	SETHURAMAN	Arduino	90.0% - Certificate	10.01.2022
113	VIGNESH	PREMKUMAR	Arduino	85.0% - Certificate	10.01.2022
114	VISHNU CHARAN	KANNADASAN	Arduino	87.5% - Certificate	10.01.2022
115	VIVEK	A	Arduino	92.5% - Certificate	10.01.2022
116	JARLS DE BRIT	ARULARASAN	Arduino	87.5% - Certificate	10.01.2022
117	LAVANYA	SELVAM	Arduino	75.0% - Certificate	10.01.2022
118	PRASANTH	DASARATHAN	Arduino	92.5% - Certificate	10.01.2022
119	VAIRAMUTHU	MURUGAN	Arduino	47.5% - Certificate	10.01.2022
120	AARTHI	MURUGAN	Arduino	92.5% - Certificate	10.01.2022
121	ABISHEK	J	Arduino	67.5% - Certificate	10.01.2022

122	Aouthithiye Barathwaj	SR Y	Arduino	92.5% - Certificate	10.01.2022
123	CHANDHRASEKARAN	GANAPATHY	Arduino	62.5% - Certificate	10.01.2022
124	GOKUL	PADMANABAN	Arduino	95.0% - Certificate	10.01.2022
125	HAARIHARAN	NC	Arduino	95.0% - Certificate	10.01.2022
126	JEEVANANDHAM	S	Arduino	80.0% - Certificate	10.01.2022
127	KAVYA	S	Arduino	95.0% - Certificate	10.01.2022
128	KRISHNAKANTH	L	Arduino	90.0% - Certificate	10.01.2022
129	KRITHIKA	BALASUBRAMA	Arduino	95.0% - Certificate	10.01.2022
130	MANIKANDAN	SIVAKUMAR	Arduino	62.5% - Certificate	10.01.2022
131	NASREEN	JALALUDEEN	Arduino	92.5% - Certificate	10.01.2022
132	NATARAJAN	RAMACHANDR	Arduino	97.5% - Certificate	10.01.2022
133	RAJASEKHAR	SARAVANAKUM	Arduino	60.0% - Certificate	10.01.2022
134	RISHIKA	GANESHKANNA	Arduino	62.5% - Certificate	10.01.2022
135	SAI SIDDHAARTH	BALAJI	Arduino	92.5% - Certificate	10.01.2022
136	SIVASAKTHI	SADHANANDH	Arduino	55.0% - Certificate	10.01.2022
137	SATHEES KUMAR	MUNUSAMY	Arduino	92.5% - Certificate	10.01.2022
138	SHANMUGA PRIYA	AK	Arduino	95.0% - Certificate	10.01.2022
139	SIVAANII	DURAIRAJ	Arduino	87.5% - Certificate	10.01.2022
140	SIVASANKARI	KARTHIKEYAN	Arduino	95.0% - Certificate	10.01.2022
141	SRIRAM	В	Arduino	95.0% - Certificate	10.01.2022
142	SUGUNESH	RETHENA KUM	Arduino	92.5% - Certificate	10.01.2022
143	TAMILSELVI	MURUGAN	Arduino	57.5% - Certificate	10.01.2022
144	TANUSRI	А	Arduino	92.5% - Certificate	10.01.2022
145	TEJAS KANNA	GOPALAKRISH	Arduino	65.0% - Certificate	10.01.2022
146	VIGNESH	RAMU	Arduino	90.0% - Certificate	10.01.2022
147	VIJAYENDRAN	VEL MURUGAN	Arduino	70.0% - Certificate	10.01.2022
148	VISHNUPRIYA	KUMAR	Arduino	85.0% - Certificate	10.01.2022
149	GOVIND KUMAR	VERMA	Arduino	62.5% - Certificate	10.01.2022
150	KARTHIKJI	GOVINDAN	Arduino	95.0% - Certificate	10.01.2022
151	MOHAMED SAMSUDEEN	AMANULLAH	Arduino	97.5% - Certificate	10.01.2022
152	NAVIN CHAKKRAVARTHI	MUTHU	Arduino	95.0% - Certificate	10.01.2022

153	SURYAPRAKASH	MANI KANDAN	Arduino	100.0% - Certificate	10.01.2022
154	AISHWARYA	К	Arduino	100.0% - Certificate	10.01.2022
155	AKASH	ANAND	Arduino	50.0% - Certificate	10.01.2022
156	ARAVINTHAN	KOUSIKAMANI	Arduino	55.0% - Certificate	10.01.2022
157	ARAVINTHAN	KATHIRAVAN	Arduino	95.0% - Certificate	10.01.2022
158	RAGU NAATHAN	C.B.	Arduino	82.5% - Certificate	10.01.2022
159	CHANDRA SEKARA BHARATH	HARIHARAN	Arduino	97.5% - Certificate	10.01.2022
160	CHANDRU	VADIVELAN	Arduino	80.0% - Certificate	10.01.2022
161	DHILIP KUMAR	S	Arduino	92.5% - Certificate	10.01.2022
162	DINESH	KRISHNAN	Arduino	65.0% - Certificate	10.01.2022
163	DIVAKAR	ERA SETHUPAT	Arduino	100.0% - Certificate	10.01.2022
164	JR	Manasa	Arduino	97.5% - Certificate	10.01.2022
165	Kishore	Varadarajan	Arduino	95.0% - Certificate	10.01.2022
166	KURAL AMUDHAN	JAYAGURUNATI	Arduino	80.0% - Certificate	10.01.2022
167	NITISH RAO	KRISHNA RAO	Arduino	95.0% - Certificate	10.01.2022
168	KOUSIKA	GANESAN	Arduino	95.0% - Certificate	10.01.2022
169	PRATHISH KUMAR	U	Arduino	95.0% - Certificate	10.01.2022
170	PRIYANGA	AYYAPPAN	Arduino	92.5% - Certificate	10.01.2022
171	PURUSHOTHAMASAI	MANI	Arduino	100.0% - Certificate	10.01.2022
172	RAJESH	KUMAR	Arduino	97.5% - Certificate	10.01.2022
173	ranjith	Μ	Arduino	85.0% - Certificate	10.01.2022
174	RIKSHITHA	ELANGOVAN	Arduino	95.0% - Certificate	10.01.2022
175	RISHEKA	SAJITH	Arduino	72.5% - Certificate	10.01.2022
176	SATHYA PRIYA	J	Arduino	90.0% - Certificate	10.01.2022
177	SHREYA	R	Arduino	95.0% - Certificate	10.01.2022
178	SHRIRAM	RAGHUPATHY	Arduino	95.0% - Certificate	10.01.2022
179	SINDHUPRIYAA	GURUMOORTH	Arduino	60.0% - Certificate	10.01.2022
180	SIVARAMAN	V	Arduino	92.5% - Certificate	10.01.2022
181	Manisha	Р	Arduino	80.0% - Certificate	10.01.2022
182	SURUTHI	BALASUBRAMA	Arduino	100.0% - Certificate	10.01.2022
183	SUWATHI	MANOHARAN	Arduino	92.5% - Certificate	10.01.2022

184	VASUNDHARA	L	Arduino	85.0% - Certificate	10.01.2022
185	SUBRAMANIYA SHIVA	KRISHNAMOOF	Arduino	95.0% - Certificate	10.01.2022
186	GOPALAKRISHNAN	RAMAKRISHNA	Arduino	95.0% - Certificate	10.01.2022
187	K. P. GOWTHAM	ROSHAN	Arduino	95.0% - Certificate	10.01.2022
188	NITHYANANDHAM	VENUGOPAL	Arduino	95.0% - Certificate	10.01.2022
189	RAJESH	G	Arduino	90.0% - Certificate	10.01.2022
190	ABID MOHAMED	MOHAMED ARI	Arduino	95.0% - Certificate	10.01.2022
191	ABINANDHAN	ARUL	Arduino	85.0% - Certificate	10.01.2022
192	ARIVARASAN	NATARAJAN	Arduino	95.0% - Certificate	10.01.2022
193	ASHWINI	PALANI	Arduino	85.0% - Certificate	10.01.2022
194	BRINDA	MURUGAN	Arduino	57.5% - Certificate	10.01.2022
195	DEEPTHI	KATHIRESAN	Arduino	92.5% - Certificate	10.01.2022
196	DHANESHH	SUDHARSANAN	Arduino	85.0% - Certificate	10.01.2022
197	HARI HARAN	NITHYANANDAN	Arduino	100.0% - Certificate	10.01.2022
198	HARINI	MAYILVAGANAN	Arduino	92.5% - Certificate	10.01.2022
199	JEYASHRI	RATHINASABAF	Arduino	95.0% - Certificate	10.01.2022
200	KHUSHI	PURUSHOTHAN	Arduino	95.0% - Certificate	10.01.2022
201	KISHORE	MOHANDASS	Arduino	82.5% - Certificate	10.01.2022
202	KUMARESH	RAJKUMAR	Arduino	87.5% - Certificate	10.01.2022
203	NITHISHKUMAR	DURAI	Arduino	92.5% - Certificate	10.01.2022
204	NIVEDHA	PERUMAL	Arduino	95.0% - Certificate	10.01.2022
205	PRAVEEN	SURESH BABU	Arduino	100.0% - Certificate	10.01.2022
206	PREETHI	SELVARAJ	Arduino	80.0% - Certificate	10.01.2022
207	RAGAVENDRA	PATTURAJA	Arduino	92.5% - Certificate	10.01.2022
208	RAKSHANIVASINI	SIVANESAN	Arduino	100.0% - Certificate	10.01.2022
209	SAI SHARON	SELVAKUMAR	Arduino	80.0% - Certificate	10.01.2022
210	SARAN SREEDHAR VELLURE	SREEDHAR PR/	Arduino	95.0% - Certificate	10.01.2022
211	SERANGEEVI	LOGANATHAN	Arduino	95.0% - Certificate	10.01.2022
212	SETHU SABARI	THIRUMALAI	Arduino	92.5% - Certificate	10.01.2022
213	SHANKAR RAM	RAMALINGAM	Arduino	97.5% - Certificate	10.01.2022
214	SRIHARI	SRIDHARAN	Arduino	87.5% - Certificate	10.01.2022

215 SUJI	SUBRAMANIYAI	Arduino	92.5% - Certificate	10.01.2022
216 SWETHA	KRISHNAMOOF	Arduino	90.0% - Certificate	10.01.2022
217 TARUN	GIRIRAJ	Arduino	80.0% - Certificate	10.01.2022
218 VISHNU	RAMESH	Arduino	87.5% - Certificate	10.01.2022
219 VENKATA SUMAN BABU CHE	SURESH	Arduino	95.0% - Certificate	10.01.2022
220 SATHISH	RANGANATHAN	Arduino	95.0% - Certificate	10.01.2022
221 AKSHARA	MURUGESAN	Arduino	95.0% - Certificate	10.01.2022
222 ARJUN PRASAD	PALANI	Arduino	47.5% - Certificate	10.01.2022
223 BALASNEKA	GANGADHARAN	Arduino	95.0% - Certificate	10.01.2022
224 DHANALAKSHMI	KATHIRESAN	Arduino	95.0% - Certificate	10.01.2022
225 DHEEPAK KARAN	ELUMALAI	Arduino	87.5% - Certificate	10.01.2022
226 ENIYAN	SUNDAR	Arduino	90.0% - Certificate	10.01.2022
227 HARISH	MANOHARAN	Arduino	90.0% - Certificate	10.01.2022
228 HARISH SRIVATHSAN	JK	Arduino	100.0% - Certificate	10.01.2022
229 JANANI	RAMADASS	Arduino	97.5% - Certificate	10.01.2022
230 JAWAHAR	SURESH	Arduino	77.5% - Certificate	10.01.2022
231 KARTHIKEYAN	BABU	Arduino	95.0% - Certificate	10.01.2022
232 MARSHAL	AMIRTHALINGA	Arduino	52.5% - Certificate	10.01.2022
233 MUTHU KRISHNAN	MURUGAN	Arduino	97.5% - Certificate	10.01.2022
234 NAVIN	SELVA KUMAR	Arduino	92.5% - Certificate	10.01.2022
235 NIVETHA	KUPPAN	Arduino	85.0% - Certificate	10.01.2022
236 RANJANI	DEVENDIRAN	Arduino	100.0% - Certificate	10.01.2022
237 SANGAVI	TAMILSELVAN	Arduino	95.0% - Certificate	10.01.2022
238 SHREENATH	RAJ KUMAR	Arduino	42.5% - Certificate	10.01.2022
239 SHRUTHI	Μ	Arduino	100.0% - Certificate	10.01.2022
240 SIRIMELLA ESWAR SAI GANE	SIRIMELLA MAL	Arduino	85.0% - Certificate	10.01.2022
241 SIVASREE	ANNADURAI	Arduino	100.0% - Certificate	10.01.2022
242 SURAJ KUMAR	BALAJI	Arduino	95.0% - Certificate	10.01.2022
243 SWAMINATHAN	GOPALAKRISH	Arduino	85.0% - Certificate	10.01.2022
244 VASU	SIVA	Arduino	90.0% - Certificate	10.01.2022
245 VIGNESH	KARIKALAN	Arduino	87.5% - Certificate	10.01.2022

246	VIGNESH	GANAPATHI	Arduino	80.0% - Certificate	10.01.2022
247	BALAJI	SELVARAJ	Arduino	70.0% - Certificate	10.01.2022
248	VEDHASRINIDHI	DHAMODHARAI	Arduino	75.0% - Certificate	10.01.2022
249	AKASH	BALAMURUGAN	Arduino	95.0% - Certificate	10.01.2022
250	ATCHAYA	RADHAKRISHN	Arduino	100.0% - Certificate	10.01.2022
251	DHARANIDARAN	LAKSHMANAN	Arduino	82.5% - Certificate	10.01.2022
252	DHARANI KUMAR	PUGALENDHI	Arduino	92.5% - Certificate	10.01.2022
253	GAYATHRI	ANBUSELVAN	Arduino	80.0% - Certificate	10.01.2022
254	GOKULAPRIYAN	KRISHNAN	Arduino	85.0% - Certificate	10.01.2022
255	HARISH	RAGHUNATHAN	Arduino	95.0% - Certificate	10.01.2022
256	KALEESWARI	RAJKUMAR	Arduino	87.5% - Certificate	10.01.2022
257	KARTHIKEYAN	RAMU	Arduino	100.0% - Certificate	10.01.2022
258	LOGESH	BALAKRISHANA	Arduino	87.5% - Certificate	10.01.2022
259	MOHANASUNDARAM	SANKAR	Arduino	97.5% - Certificate	10.01.2022
260	MUTHULAKSHMI	KAMARAJ	Arduino	90.0% - Certificate	10.01.2022
261	OOVIYA	MURALI	Arduino	85.0% - Certificate	10.01.2022
262	OVIYA	RAJASEKARAN	Arduino	95.0% - Certificate	10.01.2022
263	PRABHAKARAN	SOMU	Arduino	95.0% - Certificate	10.01.2022
264	RANJITH	SIVAKUMAR	Arduino	100.0% - Certificate	10.01.2022
265	SABARI KRISHNAN	SRINIVASAN	Arduino	90.0% - Certificate	10.01.2022
266	VIJAY RAMANATHAN	NARAYANAN	Arduino	67.5% - Certificate	10.01.2022
267	SHIVANI GOPIKA	KALUSALINGAN	Arduino	97.5% - Certificate	10.01.2022
268	SHIVASHANKARI	MADURAI	Arduino	87.5% - Certificate	10.01.2022
269	Sandeep	Vijayakumar	Arduino	67.5% - Certificate	05.03.2022
270	Subash Chandra Bose	Sekar	Arduino	85.0% - Certificate	05.03.2022

COURSE NAME : LATEX

<u>S.No</u>	First Name	Last Name	Score	
1	AISHWARYA	SURESH	58.3% - Certificate	
2	AKSHAYA	ANTONY MICHA	43.3% - Certificate	
3	ARCHANA	R	43.3% - Certificate	

4	BALASAKTHISHWARAN	MURUGESAN	60.0% - Certificate
5	GUNESHWAR	MADHAN	61.1% - Certificate
6	DARUNKUMAR	GOPALAKRISH	48.3% - Certificate
7	DHANYA	KRISHNAMACH	65.0% - Certificate
8	GOKUL	MUTHUVEL	52.8% - Certificate
9	HARI PRADOSH	SUNDARARAJA	53.9% - Certificate
10	Janani	Jayaraj	60.0% - Certificate
11	KRISHNA KUMAR	PONNAMBALAN	60.0% - Certificate
12	MAHENDRA VARMA SALIYAN	THIRUMAL	48.3% - Certificate
13	NAFEEZA BEGUM	A	85.0% - Certificate
14	PRIYADARSHAN	PRAKASH	58.3% - Certificate
15	ROSHINI	SARAVANAN	73.3% - Certificate
16	SANJAY	RAVINDRAN	56.7% - Certificate
17	SARVESH	GOVINDARAJ	50.0% - Certificate
18	SATHMIKAN	ILANGO	67.8% - Certificate
19	SIDHARTH	ANANDHAKUMA	71.7% - Certificate
20	SOUMYA	Μ	46.7% - Certificate
21	VAISHNAV	MURRUGHADA	57.8% - Certificate
22	VENKATESHWARAN	A	83.9% - Certificate
23	VIKAS	SENTHIL KUMA	60.0% - Certificate
24	VIVEKA	UGANANTHAN	66.1% - Certificate
25	ABINAYA	RAVI	50.0% - Certificate
26	AJITHASRI	RAJENDRAN	58.9% - Certificate
27	AMOSE DAVID	ARUN DAVID	55.0% - Certificate
28	AMSAVARTHINI	RAMAMOORTH	63.3% - Certificate
29	DHIVYASHRI	MUTHUKUMAR	81.7% - Certificate
30	EVANSINGH	MARIAARULRA	61.7% - Certificate
31	JEEVA PRASAD	RAVI	68.3% - Certificate
32	KALAIVANI	KUMAR	78.3% - Certificate
33	KARISH LEELA	MANIVANAN	55.6% - Certificate
34	KARTHIKEYAN	MURUGESAN	75.0% - Certificate

35	MAGESH	VENKATESAN	63.3% - Certificate
36	MURALI Dharan	Р	63.3% - Certificate
37	PAULINA	J	70.6% - Certificate
38	PEROLI RIKTHISH	BALASUNDARA	41.7% - Certificate
39	PRABAKARAN	MOHAN	41.7% - Certificate
40	SARANRAJ	AK	71.1% - Certificate
41	SHRIRANJANI	JAYANTHAN	81.7% - Certificate
42	SRI ARI PRIYA	А	67.2% - Certificate
43	SRIMATHI	KUMASTHA	56.7% - Certificate
44	SUBIKSA	GNANADURAI	70.0% - Certificate
45	SUDHARSAN	MAHESWARAN	66.7% - Certificate
46	SURIYAN	NARAYANAN	66.7% - Certificate
47	VIJAY	SEKAR	65.6% - Certificate
48	YOKESWARAN	SIVAKUMAR	62.8% - Certificate
49	JANANI	THIRUMALAI	50.0% - Certificate
50	SRINIDHI SRINIVASAN	SRINIVASAN M	66.7% - Certificate
51	VARSNI	SETHURAMAN	46.7% - Certificate
52	ABHIJAY GOPAL	S	62.2% - Certificate

COURSE NAME : R-programming

S.No	First Name	Last Name	Score
1	AISHWARYA	SURESH	47.5% - Certificate
2	DAKSHINA	RAJU	50.0% - Certificate
3	DHANYA	KRISHNAMACH	45.0% - Certificate
4	KAVIPRASAD	PANDURANGAN	45.0% - Certificate
5	NISHANTHINI	RAJENDRAN	52.5% - Certificate
6	ROHINTH	PALANIYAPPAN	40.0% - Certificate
7	ROSHINI	SARAVANAN	40.0% - Certificate

8	SANJAY	RAVINDRAN	40.0% - Certificate
9	SIDHARTH	ANANDHAKUM	55.0% - Certificate
10	ABINAYA	RAVI	60.0% - Certificate
11	DHIVYASHRI	MUTHUKUMAR	42.5% - Certificate
12	EVANSINGH	MARIAARULRA	47.5% - Certificate
13	KALAIVANI	KUMAR	47.5% - Certificate
14	KARISH LEELA	MANIVANAN	45.0% - Certificate
15	KARTHIKEYAN	MURUGESAN	47.5% - Certificate
16	MAGESH	VENKATESAN	42.5% - Certificate
17	SARANRAJ	AK	40.0% - Certificate
18	SELVAPRIYA	VELMURUGAN	55.0% - Certificate
19	SRINIDHI SRINIVASAN	SRINIVASAN M	47.5% - Certificate
20	ABHIJAY GOPAL	S	62.5% - Certificate
21	KUMARESH	RK	42.5% - Certificate
22	PREETHI	S	42.5% - Certificate

IEEE xtreme

IEEE Xtreme 15.0 Student Participation list Team name: Electrotech College Rank : 12 / National rank: 315 / World rank: 1363

S. ABHIJAY GOPAL; S. KARTHIK SMABATH; M. ARUN RAJA

Team name: POSITIVE VOLTAGERS College Rank : 9 / NATIONAL RANK – 43 / INTERNATIONAL RANK – 393

SIDHARTH K.; SATHMIKAN I; ARCHANA R

Team name: **BRAINPOWERTROOPERS National Rank-39 / International Rank-389**

Pradeesh.T; S Priyadharasan.P; Abhinaya.k

Team name: VIRTUAL VELOCITY National rank: 50 / International rank: 400

Visvak.S;

Gokul.J;

Sri Ari Priya

Team name: **TROJEN HEX National Rank – 163 / International Rank – 814**

Dhanya K

DEPARTMENTOF ELECTRICAL AND ELECTRONICS ENGINEERING

INTERNAL HACKATHON FEB 2022 – PARTICIPATED LIST OF STUDENTS

S.N O	TEAM NAME	TEAM LEADER NAME/TEAM	COLLEGE ID	DEPT/YEAR/S EC	CATEGORY	MINSTRY/ORGANISATION	PROBLEM STATEMENT	MENTOR NAME/mobile no
		MEMBERS						
1.	SWACHENTHR A	M KHARTHICK RHAM	SEC19CE038	CIVIL/III/A	HARDWARE SV	E SWACHH BHARAT MISSION (GRAMEEN),	WASTE MANAGEMENT	Dr. M Nithya
		Reshmaja K Ramesh	SEC19EC077	ECE/III/A			STSTEIVI	
		H Ashwin	SEC19ME05 5	MECH/III/A		SANITATION, MINISTRY OF		
		Janani T	SEC10EE094	EEE/III/A		JAL SAKTHI		
		S YOGESHWARAN	SEC19CS105	CSE/III/B				
		K L NITHISH RAJA	SEC19CS088	CSE//III/A	-			
2	HAXASQUAD	CHANDHRASEKARAN G	SEC19EE068	EEE/III/B	HARDWARE	STUDENT INNOVATION	AGRIBOT	Chithra V
		VIGNESH P	SEC19EE039	EEE/III/A	-			
		DHILIP KUMAR S	SEC19EE016	EEE/III/C				
		HARINI S	SEC20IC016	ICE/II/A				
		SHANMUGA PRIYA AK	SEC19EE026	EEE/III/B				
		NITHYANANDHAN V	SECL20EE02	EEE/III/C				
3	HAXASQUAD	CHANDHRASEKARAN G	SEC19EE068	EEE/III/B	HARDWARE	DOST MINISTRY OF	SOLAR PANEL WITH	Chithra V
		VIGNESH P	SEC19EE039	EEE/III/A		SCIENCE ND TECHNOLOGY	SOLAR TRACKING	
		DHILIP KUMAR S	SEC19EE016	EEE/III/C			DEVICE WITHOUT	
		HARINI S	SEC20IC016	ICE/II/A	-		POWER	
		SHANMUGA PRIYA AK	SEC19EE026	EEE/III/B	-		CONSUMTION	
		NITHYANANDHAN V	SECL20EE02	EEE/III/C				
4	HAXASQUAD	CHANDHRASEKARAN G	SEC19EE068	EEE/III/B	HARDWARE	GOVERNMENT OF	AUTOMATIC	Chithra V
		VIGNESH P	SEC19EE039	EEE/III/A		UTTARKAND	IRRIGATION	
		DHILIP KUMAR S	SEC19EE016	EEE/III/C				
		HARINI S	SEC20IC016	ICE/II/A				

		SHANMUGA PRIYA AK	SEC19EE026	EEE/III/B				
		NITHYANANDHAN V	SECL20EE02	EEE/III/C				
5	The InnovationBrai	Pooja Mohan Bengeri	secl21ee04	EEE 2nd year A	HARDWARE	Student Innovation	To obtain application of	P.Shanmugapriya
	ns	K.Dhanya	sec20ee004	EEE 2nd year A			thermoelectric couple (cooling	
		M.Soumya	sec20ee009	EEE 2nd year A			and heating) in same module using	
		A.Sahana	secl21ee063	EEE 1st year A			clean energy to	
		Chandravelan M P	sec21ee035	EEE 1st year A			meet modern time	
		Shruti Sanjay Kulkarni	secl20me16	MECH 3rd year A			goals	
6	TECHYY INNOVATORS	SUGUNESH R	SEC19EE047	EEE 3RD YEAR B	HARDWARE	VOLVO	Fault tracing in wire harnessing	P. Shanmuga priya
		Suba shree M	SEC19EC022	ECE 3RD YEAR E				
		Rethick T	SEC19EE034	EEE 3RD YEAR A				
		Manasa J R	SEC19EE056	EEE 3RD YEAR C				
		Rikshitha E	SEC19EE076	EEE 3RD YEAR C				
		Krishnakanth U	SEC19EE008	ICE 3RD YEAR				
7	TECHYY INNOVATORS	SUGUNESH R	SEC19EE047	EEE 3RD YEAR B	HARDWARE	AICTE, Student innovation	Smart vehicle	P. Shanmuga priya
		Suba shree M	SEC19EC022	ECE 3RD YEAR E				
		Rethick T	SEC19EE034	EEE 3RD YEAR A				
		Manasa J R	SEC19EE056	EEE 3RD YEAR C				
		Rikshitha E	SEC19EE076	EEE 3RD YEAR C	1			
		Krishnakanth U	SEC19EE008	ICE 3RD YEAR	1			

8	TECHYY INNOVATORS	SUGUNESH R	SEC19EE047	EEE 3RD YEAR B	HARDWARE	NIFTEM Thanjavur ,Ministry of Food	IOT enabeled risk monitoring	P. Shanmuga priya
		Suba shree M	SEC19EC022	ECE 3RD	-	Processing Industries	system in cold	
				YEAR E		(MoFPI)	supply chain	
		Rethick T	SEC19EE034	EEE 3RD	1			
				YEAR A				
		Manasa J R	SEC19EE056	EEE 3RD				
				YEAR C				
		Rikshitha E	SEC19EE076	EEE 3RD				
				YEAR C				
		Krishnakanth U	SEC19EE008	ICE 3RD				
				YEAR				
9	ALMS CORP	PRATHISH KUMAR	SEC19EE049	EEE/III/C	HARDWARE	Department of	Wheel Chair with	Mr. K. MOHANRAJ/
		U			_	Science and	attachment for B-	9884467029
		SANDEEP V	SEC19EE065	EEE/III/B	_	technology (DOST),	Туре	
		SINDHU PRIYAA G	SEC19EE012	EEE/III/C	_	Ministry of Science	oxygen cylinder	
		PRIYA A	SEC20IC010	ICE/II/A	_	and Technolog	for COPD	
		SARAVANAN A	SEC20ME112	MECH/II/C			patients.	
		SIDHARTH	SEC20EE010	EEE/II/A				
10	WEBAHOLICS	HEMAA C (TL)	SEC21CS129	CSE/I/B	SOFTWARE	DRDO, MINISTRY OF	NLP BASED APP	Dr. B. PRIYA
		VAISHNAVI	SEC21CS037	CSE/I/B		DEFENCE	FOR EDUCATION	
		MAHADEVAN			_		IN VERNACULAR	
		DEEPTHI J	SEC21CS026	CSE/I/B	_		LANGUAGE	
		KAVINA R	SEC21EI027	EIE/I/A	_			
		VEDAPRIYA N	SEC21AD108	AI&DS/I/B	_			
		Shanmuga Priya M	SEC21EE074	EEE/I/A				
11	Leccy	Karthik B	SEC19IT126	IT/III/C	SOFTWARE	AICTE	Energy	
		Tharunkumar K	SEC19IT047	IT/III/C			Conservation with	Sheeba Rachel S
		Janani	SEC19EC080	ECE/III/A			modern	
		Priyadharshini S			_		technology	
		Krithika B	SEC19EE070	EEE/III/B	4			
		Jayavarshini G	SEC19EC032	ECE/III/A	4			
		Gowrishankar K	SEC19EC072	ECE/III/A				

12	CONTROL C	HARINI N	SEC19IT074	IT/3/B	SOFTWARE	NARCOTIC	development of	J.RANJANI/9865002201
		KARTHIK K	SEC19IT037	IT/3/B		S CONTROL	an app where	
		KARTHIK SRI SAKTHI	SEC19IT010	IT/3/B		BUREAU	public can	
		DEGALA					report	
		ANUPRIYA V	SEC19IT159	IT/3/B			information	
		SAI SIDDHAARTH B	SEC19EE003	EEE/3/B				
		SUDHARSAN B	SEC19EC018	ECE/3/A				
13	TINY FIXERS	RISHIKA G	SEC19EE025	EEE / III / B	HARDWARE	GOVERNMENT OF	TO BUILT ROBOTS	Dr. Nayanathara / EEE
		KAVYA S	SEC19EE014	EEE / III / B		RAJASTAN	FOR ALL	
		TAMILSELVI M	SEC19EE089	EEE / III / B			DEDICATES TASKS	
		LINGESON P	SEC19ME067	MECH/III A			SUCH AS	
		SHOAIB D R	SEC19ME089	MECH/III B			CLEANING SHOES,	
		ROHITH JONES	SEC19EC045	ECE /III A			PLANTING CROPS,	
							CLEANING	
							WINDOWS ETC.	
14	VISUAL	R.JEYASHRI	SEC18EEO56	EEE/IV A	SOFTWARE		TRAFFIC LIGHT	DR.G.PUTHILIBAI
	SPECTACLE	DEEPTHI SHEERY	SEC19CS086	CSE/III B			NEGOTIATION	
		AISHEARAYA.S.P	SEC19EC045	ECE/III A			AND PERCEPTION	
		DEEPAK.N	SEC19EC034	ECE/III A]		BASED	
		ARAVIND ADITHYA	SEC19CS023	CSE/III C			DECTUECTION	
		ANUUREGA.T.R	SEC19EC067	ECE/III A				

DEPARTMENTOF ELECTRICAL AND ELECTRONICS ENGINEERING

INTERNAL HACKATHON – FINAL LIST-WINNERS

S.NO	TEAM NAME	TEAM LEADER NAME/TEAM MEMBERS	COLLEGE ID	DEPT/YEAR/SEC	CATEGORY	MINSTRY/ORGANISATION	PROBLEM STATEMENT	MENTOR NAME/mobile no
1	ALMS CORP	PRATHISH KUMAR U	SEC19EE049	EEE/III/C	HARDWARE	RDWARE Department of Science and technology (DOST), Ministry of Science and Technolog	Wheel Chair with	Mr. K. MOHANRAJ/ 9884467029
		SANDEEP V	SEC19EE065	EEE/III/B			attachment	
		SINDHU PRIYAA	SEC19EE012	EEE/III/C			for B-Type	
		G					oxygen	
		PRIYA A	SEC20IC010	ICE/II/A			cylinder for	
		SARAVANAN A	SEC20ME112	MECH/II/C			COPD	
		SIDHARTH	SEC20EE010	EEE/II/A			patients.	
2	TECHYY	SUGUNESH R	SEC19EE047	EEE 3RD YEAR B	HARDWARE	AICTE, Student innovation	Smart vehicle	P. Shanmuga priya
	INNOVATORS	Suba shree M	SEC19EC022	ECE 3RD YEAR E				
		Rethick T	SEC19EE034	EEE 3RD YEAR A				
		Manasa J R	SEC19EE056	EEE 3RD YEAR C				
		Rikshitha E	SEC19EE076	EEE 3RD YEAR C				
		Krishnakanth U	SEC19EE008	ICE 3RD YEAR				
3	Leccy	Karthik B	SEC19IT126	IT/III/C	SOFTWARE	AICTE	Energy	
		Tharunkumar K	SEC19IT047	IT/III/C			Conservation	Sheeba Rachel S
		Janani	SEC19EC080	ECE/III/A			with modern	
		Priyadharshini S			-		technology	
		Krithika B	SEC19EE070	EEE/III/B				
		Jayavarshini G	SEC19EC032	ECE/III/A				
		Gowrishankar K	SEC19EC072	ECE/III/A				

4	TINY FIXERS	RISHIKA G	SEC19EE025	EEE / III / B	HARDWARE	GOVERNMENT OF	TO BUILT	Dr. Nayanathara / EEE
		KAVYA S	SEC19EE014	EEE / III / B		RAJASTAN	ROBOTS FOR	
		TAMILSELVI M	SEC19EE089	EEE / III / B			ALL	
		LINGESON P	SEC19ME067	MECH/III A			DEDICATES	
		SHOAIB D R	SEC19ME089	MECH/III B			TASKS SUCH	
		ROHITH JONES	SEC19EC045	ECE /III A			AS CLEANING	
							SHOES,	
							PLANTING	
							CROPS,	
							CLEANING	
							WINDOWS	
_							EIC.	
5	VISUAL	R.JEYASHRI	SEC18EE056		SOFTWARE	AICTE		DR.G.PUTHILIBAI
	SPECIACLE	DEEPIHI	SEC19CS086	CSE/III B			NEGOTIATION	
		SHEERY	6564056045		_			
		AISHEARAYA.S.P	SEC19EC045	ECE/III A	_		PERCEPTION	
			6564056024	505/W A	_		DECTUECTION	
		DEEPAK.N	SEC19EC034	ECE/III A	_		DECIDECTION	
		ARAVIND	SEC19CS023	CSE/III C				
			5501050067		_			
C						NARCOTICS		
D	CONTROLC		SEC19IT074	11/3/B	SOFTWARE		development	J.RANJANI/9865002201
		KARTHIK K	SEC19IT037	IT/3/B	_	CONTROL BUREAU	of an app	
		KARTHIK SRI	SEC19IT010	IT/3/B			where public	
		SAKTHI DEGALA			_		can report	
		ANUPRIYA V	SEC19IT159	IT/3/B			information	
		SAI	SEC19EE003	EEE/3/B				
		SIDDHAARTH B			1			
		SUDHARSAN B	SEC19EC018	ECE/3/A				

DEPARTMENTOF ELECTRICAL AND ELECTRONICS ENGINEERING

SIH 2022 -PARTICIPATED LIST OF STUDENTS

S.NO	TEAM NAME	TEAM LEADER NAME/TEAM MEMBERS	COLLEGE ID	DEPT/YEAR/SEC	CATEGORY	MINSTRY/ORGANISATION	PROBLEM STATEMENT	MENTOR NAME/mobile no
1	ALMS CORP	PRATHISH KUMAR U	SEC19EE049	EEE/III/C	HARDWARE	Department of Science and technology (DOST),	Wheel Chair with	Mr. K. MOHANRAJ/ 9884467029
		SANDEEP V	SEC19EE065	EEE/III/B		Ministry of Science and	attachment	
		SINDHU PRIYAA	SEC19EE012	EEE/III/C		Technolog	for B-Type	
		G					oxygen	
		PRIYA A	SEC20IC010	ICE/II/A			cylinder for	
		SARAVANAN A	SEC20ME112	MECH/II/C			COPD	
		SIDHARTH	SEC20EE010	EEE/II/A			patients.	
3	Leccy	Karthik B	SEC19IT126	IT/III/C	SOFTWARE	AICTE	Energy	
		Tharunkumar K	SEC19IT047	IT/III/C			Conservation	Sheeba Rachel S
		Janani	SEC19EC080	ECE/III/A			with modern	
		Priyadharshini S					technology	
		Krithika B	SEC19EE070	EEE/III/B				
		Jayavarshini G	SEC19EC032	ECE/III/A				
		Gowrishankar K	SEC19EC072	ECE/III/A				
5	VISUAL	R.JEYASHRI	SEC18EEO56	EEE/IV A	SOFTWARE	AICTE	TRAFFIC LIGHT	DR.G.PUTHILIBAI
	SPECTACLE	DEEPTHI	SEC19CS086	CSE/III B			NEGOTIATION	
		SHEERY					AND	
		AISHEARAYA.S.P	SEC19EC045	ECE/III A			PERCEPTION	
							BASED	
		DEEPAK.N	SEC19EC034	ECE/III A			DECTUECTION	
		ARAVIND	SEC19CS023	CSE/III C				
		ADITHYA						
		ANUUREGA.T.R	SEC19EC067	ECE/III A				

6	CONTROL C	HARINI N	SEC19IT074	IT/3/B	SOFTWARE	NARCOTICS	development	J.RANJANI/9865002201
		KARTHIK K	SEC19IT037	IT/3/B		CONTROL BUREAU	of an app	
		KARTHIK SRI	SEC19IT010	IT/3/B	-		where public	
		SAKTHI DEGALA					can report	
		ANUPRIYA V	SEC19IT159	IT/3/B			information	
		SAI	SEC19EE003	EEE/3/B				
		SIDDHAARTH B						
		SUDHARSAN B	SEC19EC018	ECE/3/A				

DEPARTMENTOF ELECTRICAL AND ELECTRONICS ENGINEERING

SIH 2022 -WINNERS

S.NO	TEAM NAME	TEAM LEADER NAME/TEAM	COLLEGE ID	DEPT/YEAR/SEC	CATEGORY	MINSTRY/ORGANISATION	PROBLEM STATEMENT	MENTOR NAME/mobile
		MEMBERS						no
3	Leccy	Karthik B	SEC19IT126	IT/III/C	SOFTWARE	AICTE	Energy	
		Tharunkumar K	SEC19IT047	IT/III/C			Conservation	Sheeba Rachel S
		Janani	SEC19EC080	ECE/III/A			with modern	
		Priyadharshini S					technology	
		Krithika B	SEC19EE070	EEE/III/B				
		Jayavarshini G	SEC19EC032	ECE/III/A				
		Gowrishankar K	SEC19EC072	ECE/III/A				
5	VISUAL SPECTACLE	R.JEYASHRI	SEC18EEO56	EEE/IV A	SOFTWARE	AICTE	TRAFFIC LIGHT	DR.G.PUTHILIBAI
		DEEPTHI	SEC19CS086	CSE/III B			NEGOTIATION	
		SHEERY					AND	
		AISHEARAYA.S.P	SEC19EC045	ECE/III A			PERCEPTION	
		DEEPAK.N	SEC19EC034	ECE/III A			BASED	
		ARAVIND	SEC19CS023	CSE/III C			DECTUECTION	
		ADITHYA						
		ANUUREGA.T.R	SEC19EC067	ECE/III A				

INTERNAL HACKATHON – HACKFEST 2022 PHOTOS

Sri Sairam Engineering College Aicte Mhrd Initiated Smart India Internal Hackathon Saihackfest2022

Chennai, Mar 14, Tambaram, Sri Sairam Engineering College conducted a 7 – hour continuous Internal Hackathon, SaiHack-Fest2022 on 8th March 2022 at College Premises. This event was a

preliminary event conducted by the College as per the instructions given by MHRD Institution Innovation Council (IIC) and AICTE. Smart India Hackathon is the world's largest Open innovation model contest which has been conducted by the Government of India since 2017. The event was inaugurated by Mr. Sai Prakash Leo Muthu, CEO, Sairam Institutions., Principal Dr. K. Porkumaran, Sri Sairam

Engineering College, Dr. A. Rajendra Prasad, Dean -Student Affaris, and external jury members, Dean - Academic, Dean- Innovation, ,Head of the departments, Dr. M. Ananthi, SIH Coordinator and SIH Department Coordinators.

The event lasting from 10 AM to 5 PM, was organized on 8th March 2022. Around 528 students from interdisciplinary departments comprising 42 software teams and 46 hardware teams, in a total 88 teams proposed unique and innovative ideas for the specified problems. Students came up with solutions in fields such as Healthcare, Smart Automation, Robotics and Drones, Transport and Logistics,

Renewable/Sustainable energy, Bio-Medical Devices, Smart Vehicles, Agriculture and others. An expert panel of judges including Mr. Prabhakaran Kuthalingam, Program Manager, Business Development Al, Infosys Ltd., Dr. R. Kanagavel, Director & Head, Skill Development & Training

Division, National Institute of Wind Energy, Mr. J. Vishnuwardhan, Vice President, Crion Technologies, Mr. A J Joel, Associate Manager, RR Donnelley, Sairam Techno Incubator Foundation experts Mr. Balamurugan, Mr. Sam Austin, Mr. Jayandan, Mr. Lelin Stephen, Mr. Samshudheen and others

from the institution judge the hardware and software solutions. Problems given by Private and Government organizations were eagerly welcomed by the student teams. Students gained knowledge and this forum helped them to improve their skills. The best 15 ideas were selected and submitted in the SIH website under college SPOC login. Teams will work continuously within the stipulated time, to implement the solution and win cash awards for each problem statement.

Dr. M. Ananthi, Asso. Prof & Head Department of Computer Science & Business Systems, sri Sairam Engineering College, SIH - College SPOC

Conducting Internal Hackathon for SIH 2022

PASSWORD

100100100010001001

🕑 /sairam_EC

An Autonomous Institution | Affiliated to Anna University & Approved by AICTE, New Delhi Accredited by NBA and NAAC "A+" | An ISO 9001:2015 Certified and MHRD NIRF ranked institution Sai Leo Nagar, West Tambaram, Chennai - 600 044. www.sairam.edu.in

extends a hearty welcome to the Inaugural function of

Conducting Internal Hackathon for SIH 2022

on Tuesday, 8th March 2022 at 9.30 a.m. Venue: SSR Hall

Mr. Prabhakaran Kuthalingam

Program Manager - Business Development Al Infosys Ltd,

has kindly consented to be the Chief Guest and will deliver the inaugural address

Dr. M. Ananthi HOD – CSBS & <u>SIH</u> Coordinator **Dr. K. Porkumaran** Principal / SEC Sai Prakash LeoMuthu

Chairman & CEO Sairam Institutions

D

JURY MEMBERS

EXTERNAL MEMBERS

- 1. Dr. P. Kanagavel Director & Head, Skill Development and Training (SDT) Division National Institute of Wind Energy (NIWE)
- 2. Mr. J. Vishnuvardhan Vice President, Crion Technologies
- 3. Mr. Joel A J Associate Manager- RR Donnelley
- **4. Mr. U. Balamurugan** Sairam Techno Incubator Foundation
- 5. Mr. J. Sam Austin Sairam Techno Incubator Foundation
- 6. Mr. S.A. Jayandan Sairam Techno Incubator Foundation
- 7. Mr. S. Lelin Stephen Sairam Techno Incubator Foundation
- 8. Mr. M. Samshudeen Sairam Techno Incubator Foundation

INTERNAL MEMBERS

4.

- 1. Dr. J. Raja, Dean – Academics, Sri Sairam Engineering College, Chennai
- 2. Dr. C R Rene Robin, Dean – Innovation, Sairam Group of Institutions

3. Dr. S. Vaidhyanathan,

Professor, Department of Mechanical Engineering, Sri Sairam Engineering College, Chennai

Dr. K. Renganathan,

Professor & Head, Department of Electronics and Instrumentation Engineering, Sri Sairam Engineering College, Chennai

5. Dr. G. Adiline Macriga

Professor, Department of Information Technology, Sri Sairam Engineering College, Chennai

6. Dr<mark>. S.</mark> Sumathy,

Professor, Department of Electronics and Communication Engineering, Sri Sairam Engineering College, Chennai

7. Dr. M. Suresh Anand

Professor, Department of Computer Science and Engineering, Sri Sairam Engineering College, Chennai

Campus: Sai Leo Nagar, West Tambaram, Chennai - 600 044. www.sairam.edu.in

Administrative Office: "Sai Bhavan", 31B, Madley Road, T.Nagar, Chennai - 17. Ph: 044-4226 7777. www.sairamgroup.in

We build a better nation through quality education.

www.sairam.edu.in

SMART IN

HACKATHON

2022

AT GIET UNIVERSITY

ODISHA, GUNUPUR

1П

to our Prize winning Students & Mentors

Sri Sairam Engineering College has won the FIRST PRIZE in the All India Level with a Cash Prize of

Rs. 1,00,000/-

LECCY

DR704 - Energy Conservation with Modern Technology

Team Leader

KARTHIK B

THARUNKUMAR K

JANANI **PRIYADHARSHINI S**

Team Members

KRITHIKA B

GOWRISHANKAR K

Mentors: Ms. SHEEBA RACHEL S / Mr. JOHN PRATAP SINGH J

Dr. K. Porkumaran Principal

Shri, Sai Prakash LeoMuthu Chairman & CEO

www.sairam.edu.in

to our Prize winning Students & Mentors

Sri Sairam Engineering College has won the FIRST PRIZE in the All India Level with a Cash Prize of

Rs. 1,00,000/-

VISUAL SPECTACLE

AG676 - Traffic Light Negotiation and Perception - Based Detection

1П

П1Г

AT PRESIDENCY UNIVERSITY **BENGALURU, KARNATAKA**

2022

Team Leader

JEYASHRI R

DEEPTHI SHERLY J AISHWARYAA S P

DEEPAK N

Team Members

ARVIND ADITHYA N

ANUREGA T R

Mentor : Dr. G. PUTHILIBAI

Dr. K. Porkumaran Principal

Shri, Sai Prakash LeoMuthu Chairman & CEO

