Re	g. No.							
Code		14'	,					

Question Paper Code

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV/DEC 2022

Seventh Semester

Electronics and Communication Engineering EC8701 - ANTENNAS AND MICROWAVE ENGINEERING

(Regulations 2017)

Duration: 3 Hours

Max. Marks: 100

PART - A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions

1	. Trace the two dimensional radiation pattern of a directional antenna.	Marks, K-Level, CO 2,K2,CO1
2	. Describe the equation for antenna noise temperature with its definition.	2,K2,C01
3	. Compute the radiation resistance of current element whose overall length is $\lambda/50$.	2,K2,CO2
4	List the disadvantages of loop antennas.	2,K1,CO2
5	Examine directivity of directional couplers.	2,K1,CO4
6	Define Faraday rotation.	2,K2,CO4
7	. Identify the factors that reduce the efficiency of IMPATT diodes.	2,K2,CO5
8		2,K2,CO5
9	List the needs for impedance matching networks.	2,K1,CO6
1	0. Identify the function of a mixer.	2,K2,CO6

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

- 11. a) (i) An antenna has a field pattern given by $E(\theta) = \cos\theta \cos 2\theta$ for $0^{\circ} \le \theta$ 8, K2,C01 $\le 90^{\circ}$. Compute (a) HPBW (b) FNBW.
 - (ii) Explain the concept of radiation pattern and directivity of an antenna.

5, K2,CO1

OR

- b) Explain the concept of (a) Bandwidth (b) Beam efficiency (c) Antenna 13, K2,C01 Temperature (d) link budget and link margin.
- 12. a) Determine the power radiated by a half wave dipole antenna and hence 13,K3,CO2 obtain its radiation resistance. Also find its directivity.

OR

b) Compare different types of horn antenna structures with neat diagrams. 13, K2,CO2 Also determine its directivity and beamwidth.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

11470

13. a) Explain the noise characteristics of a microwave receiver front end 13, K2,CO4 with necessary diagrams and mathematical expression.

OR

- b) Explain the working of Magic Tee with neat diagram and also obtain 13, K2,CO4 its scattering matrix.
- 14. a) Determine the working principle of Gunn diode as a transferred ^{13, K2,CO5} electron device with two valley models, Also draw the structure, equivalent circuit and V-I characteristics of Gunn diode.

OR

- b) Describe velocity modulation and explain the working principle of 13, K2,CO5 reflex klystron and bunching parameter.
- 15. a) Describe the characteristics of amplifier and Examine the transducer 13, K2,CCC power gain, unilateral power gain, available power gain and operating power gain of a microwave amplifier using S parameters.

OR

b) Classify the methods to design the filter for microwave frequencies. 13, K2,C06

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Trace the radiation pattern of a linear array of 4 isotropic elements 15,K2,CO3 spaced $\lambda/2$ apart and fed in phase with equal currents.

OR

b) Explain in detail the concept, design principles and types of phased 15,K2,CO3 array. Also explain the different feeding methods of phased array.