	Reg	. No.				1			
	Question Paper Code	1	1657]				
	B.E. / B.Tech DEGREE EXAMI	NATIO	ONS,	NOV	//DI	EC	2022		
	Fourth Sem	nester							
	Electronics and Communi	cation	Engi	neeri	ng	AT		V	
	20ECPW401 - ELETRONIC CIRCU (Pagulations	2020)		LAB	SOR	AI	UK	r	
Г	Uration: 3 Hours	2020)			1	Max	. Ma	arks:	100
Ľ	$PART - A (10 \times 2 =$	= 20 Ma	arks)				199		
	Answer ALL Q	uestion	s						
									Marks, K-Level, CO
1.	State the function of Q-point.								2,K1,CO1
2.	Define bias stability.								2,K2,CO1
3.	Compare cascade and cascode amplifi	ers.							2,K2,CO2
4.	Draw the h parameter equivalent mode	el for (CBE	BJT a	mpl	ifie	r.		2,K2,CO2
5	A tuned amplifier has its maximum gain at	a frequ	Jency	of 2	MH	z ar	nd ha	as a	2,K2,CO4
	bandwidth of 50 KHz. Calculate the Q fact	or.							
6.	Define gain product bandwidth of tuned an	nplifier	s.						2,K1,CO4
7.	List the applications of monostable multivi	brators							2,K1,CO5
8.	Define duty cycle.								2,K1,CO5
9.	What is Class C amplifiers efficiency?								2,K1,CO6
	1								2 12 006

10. Classify Power amplifiers.

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11.	a)	(i) Draw the DC load line of fixed bias circuit and derive the Stability	5,K2,COI
		factor S. (ii) For the fixed bias circuit Compute Inc. Ico. VCEO and VC	8,K2,CO1
		(II) FOI the fixed bias chean compare BQ steps (CEQ and CE	

11657 K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

1

- b) Construct a voltage divider bias circuit and derive its stability factor ^{13,K3,CO1} and also give reasons why it is advantageous than fixed bias circuit.
- 12. a) Draw CE amplifier and its small signal equivalent. Derive its ^{13,K2,CO2} A_{vs}, A_i, R_{in},R_o.

OR

- b) Explain the emitter coupled differential amplifier with neat ^{13,K2,CO2} diagram and derive expression for CMRR.
- 13. a) Construct the double tuned amplifier with a neat circuit diagram and ^{13,K2,CO4} derive the expression for 3dB bandwidth.

OR

- b) Illustrate the stability of tuned amplifiers and mention the need of 13,K2,CO4 neutralization.
- 14. a) Illustrate the operation of collector coupled a stable multivibrator with 13,K2,CO5 neat diagrams and waveforms.

OR

- b) Explain the working principle of Bi stable multivibrator with neat ^{13,K2,C05} diagram.
- 15. a) Explain the operation of Class-AB complementary/symmetry power ^{13,K2,CO6} amplifier with appropriate circuit diagram and its load line. Give the expression for dc power input, ac power output and efficiency.

OR

b) Explain the working of series fed and transformer coupled class A ^{13,K2,CO6} amplifier with neat diagrams. Also derive its efficiency.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Explain the effect of a current series feedback on input and output ^{15,K2,CO3} resistance of a BJT amplifier with circuit diagram. Draw its equivalent circuit and derive the equation.

OR

b) (i) List the similarities and differences between RC phase shift and ^{8,K1,CO3} Wein bridge oscillators.
(ii) In a Wein-bridge oscillator, if the value of R = 100KΩ, and the ^{4,K2,CO3} frequency of oscillation is 10KHz, find the value of Capacitor.
(iii) A Wein-bridge oscillator has a frequency of 500kHz. If the value of C is 1000pF, determine the value of R.

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create2