1. A. A.	23/01/2023 Reg. No.		
	Question Paper Code 11665		
B.E. / B.Tech DEGREE EXAMINATIONS, NOV/DEC 2022 Fourth Semester Electronics and Communication Engineering (Common to Computer and Communication Engineering) 20BSMA401 - PROBABILITY THEORY AND STOCHASTIC PROCESSES (Regulations 2020) (Usage of Normal Table Permitted)			
D	Duration: 3 Hours $PAPT = A (10 \times 2 - 20 Mortes)$	Max. Mar	ks: 100
	$ \begin{array}{c} \mathbf{FART} - \mathbf{A} \left(10 \times 2 = 20 \text{ Marks} \right) \\ \text{Answer ALL Questions} \end{array} $		
1.	State any two properties of moments.		Marks, K-Level,CO 2,K1,CO1
2.	parameter $\lambda = 1/3$. What is the probability that the repair time exceeds 3 hours?		
3.	If X and Y are independent then show that $Cov(X,Y) = 0$.		2,K1,CO2
4.	State central limit theorem of Lindberg-Levy's form.		2,K1,CO2
5.	Compute the mean of the random process X(t) whose	auto correlatio	on 2,K3,CO3
	function is given by $R_{XX}(\tau) = 25 + \frac{4}{1+6\tau^2}$		
6.	State any two properties of power spectral density.		2,K1,CO3
7.	Suppose that customers arrive at a bank according to a Poisson Process 2,K3,CO4 with a mean rate of 3 per minute. Find the probability that during a time interval of 2 minutes exactly 4 customers arrive		
8.	Define Markov chain and one-step transition probability. 2, <i>K1,CO4</i>		
9.	What is unit impulse response of a system? Why it is called so?		2,K2,CO5
10.	If the input and output of the system $Y(t) = \int_{-\infty}^{\infty} h(u) X(t)$	(t-u) du are wi	2,K2,CO5 de
	sense stationary processes, how are their power spectral related?	density function	l's
PART - B (5 × 16 = 80 Marks) Answer ALL Questions			
11.	a) A random variable X has the following probability fun X: 0 1 2 3 4 5 6 7 Y: 0 K 2K 2K 3K K ² 2K ² 7 Find (i) K (ii) $P(X \le 6)$ (iii) $P(X \ge 6)$ (iv) $P(0 \le X)$	$\frac{1}{K^2 + K}$	16,K3,CO1
(v) distribution function of X (vi) $Var(3X - 4)$ OR			
K1 -	– Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evalua l	ate; K6 – Create	11665

al.

- b) Buses arrive at a specified stop at 15 min. intervals starting at 7 a.m , *16,K3,C01* that is , they arrive at 7,7:15,7:45 and so on . if the passenger arrives at the stop at a random time that is uniformly distributed between 7 and 7:30 a.m. find the probability that he waits (1) less than 5 min for a bus and (2) at least 12 min for a bus.
- 12. a) If the joint p.d.f of (X, Y) is given by f(x, y) = x + y for 0 < x, y < 1, find the correlation coefficient between X and Y.

OR

- b) If $X_1, X_2, X_3, \dots, X_n$ are Poisson variates with parameter $\lambda = 2$, use 16,K3,CO2 central limit theorem to estimate $P(120 \le S_n \le 160)$, where $S_n = X_1 + X_2 + \dots + X_n$ and n = 75.
- 13. a) Show that the random process $X(t) = \cos(t + \phi)$ where ϕ is 16,K3,CO3 uniformly distributed in $(0,2\pi)$ with probability density function $f(\phi) = \frac{1}{2\pi}, 0 < \phi < 2\pi$ is (i) First order stationary (ii) Stationary in wide sense (iii) Ergodic.

OR

- b) A random process $\{X(t)\}$ is given by $X(t) = A \cosh t + B \sinh t$, where 16,K3,CO3 A and B are independent random variables such that E(A) = E(B) = 0and $E(A^2) = E(B^2) = \sigma^2$. Find the power spectral density of the process.
- 14. a) Suppose that customers arrive at a bank according to a Poisson Process 16,K3,CO4 with a mean rate of 3 per minute. Find the probability that during a time interval of 2 minutes
 - (i) exactly 4 customers arrive.
 - (ii) more than 2 customers arrive.
 - (iii) atmost 2 customers arrive.

OR

- b) A fair dice is tossed repeatedly. If X_n denotes the maximum of the ^{16,K3,CO4} numbers occurring in the first n tosses, find the transition probability matrix P of the Markov Chain $\{X_n\}$. Find also $P\{X_2=6\}$.
- 15. a) A random process X(t) is the input to a linear system whose impulse 16,K3,CO5 response is h(t) =2e^{-t},t≥0. If the autocorrelation function of the process is R _{XX} (τ) = e^{-2,τⁱ}, determine the cross correlation function between the input process X (t) and the output process Y (t).
 - b) If the input X(t) and the output Y(t) are connected by the differential 16,K3,CO5 equation $T \frac{d y(t)}{dt} + y(t) = x(t)$, prove that they can be related by means of a convolution type integral. Assume that x (t) and y (t) is zero for t ≤ 0 .

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 11665 2