	Re	g. No.					
	Question Paper Code	11	738]		
B.E. / B.Tech DEGREE EXAMINATIONS, NOV/DEC 2022							
Second Semester							
Electronics and Communication Engineering							
	(Common to Electrical and E	lectronic	s Eng	gineer	ring)		
	20BSPH201 - PHYSICS OF E	LECTR	ONIC	C DE	VICES		
	(Regulations	2020)					
Dura	ation: 3 Hours				Ma	x. Mai	rks: 100
	PART - A (10 × 2	= 20 Ma	rks)				
	Answer ALL (Juestions	5				
							Marks, K-Level,CO
1.	State Wiedemann-Franz law.						2,K1,CO1
2.	What is a periodic potential?						2,K1,CO1
3.	Differentiate soft and hard magnetic mater	ials.					2,K1,CO2
4.	What is magnetic moment?						2,K1,CO2
5.	Define dielectric loss.						2,K1,CO3
6.	What is defect breakdown?						2,K1,CO3
7.	Define diffusion current.						2,K1,CO4

1.	State Wiedemann-Franz law.	2,K1,CO1
2.	What is a periodic potential?	2,K1,CO1
3.	Differentiate soft and hard magnetic materials.	2,K1,CO2
4.	What is magnetic moment?	2,K1,CO2
5.	Define dielectric loss.	2,K1,CO3
6.	What is defect breakdown?	2,K1,CO3
7.	Define diffusion current.	2,K1,CO4
8.	List any four advantages of tunnel diode.	2,K1,CO4
9.	Draw the Eber Moll model in BJT.	2,K2,CO5
10.	Define h parameter.	2,K1,CO5

PART - B (5 × 13 = 65 Marks)

F	Insw	ver 1	AL.	LQ	Jues	tions
---	------	-------	-----	----	------	-------

11.	a)	Derive the expression for electrical and thermal conductivity of metals based on classical free electron theory.	13,K2,CO1
		OR	
	b)	Obtain an expression for density of energy states.	13,K2,CO1
12.	a)	Describe the ferromagnetic domain theory in detail.	13,K2,CO2
		OR	
	b)	(i) Draw the B-H curve (hysteresis) for a ferromagnetic material and	8, <i>K2</i> , <i>CO</i> 2
		(ii) Bring out the differences between soft and hard magnetic materials	5,K2,CO2
			11720

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 11738 1

13. a) Discuss the electronic and ionic polarization and derive their suitable ^{13,K2,CO3} expression.

OR

- b) Starting with the internal field in a dielectric obtain Clausius Mossotti ^{13,K2,CO3} equation.
- 14. a) Explain the intrinsic semiconductor and deduce the expression for ^{13,K2,CO4} density of electrons in an intrinsic semiconductor.

OR

- b) Obtain an expression for the carrier concentration of holes in the ^{13,K2,CO4} valence band of a p-type semiconductor.
- 15. a) Explain the construction and working of NPN transistor with neat ^{13,K2,CO5} sketch.

OR

b) Draw the input and output characteristics of common emitter (CE) ^{13,K2,CO5} configuration and explain it.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Explain with a neat sketch the construction and working characteristics 15,K2,CO6 of D-MOSFET.

OR

b) Explain the construction, working and operation characteristics of ^{15,K2,CO6} DIAC with neat diagram.

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create 11738 2