-		AL.	0	023
2	5.	- U.Li	-4	Com
1000			-	

Reg. No.

Question Paper Code 11806

B.E./B.Tech. - DEGREE EXAMINATIONS, APRIL/MAY 2023

Sixth Semester

Electronics and Communication Engineering EC8651 – TRANSMISSION LINES AND RF SYSTEMS

(Use of Smith charts is permitted)

(Regulations 2017)

Duration: 3 Hours

Max. Marks: 100

PART - A (10 × 2 = 20 Marks)

Answer ALL Questions

		Marks, K-Level,CO
1.	What is a distortionless line? What are its constants?	2,K1,CO1
2.	Define reflection coefficient.	2,K1,CO1
3.	What are the values of SWR for open circuit, short circuit and matched line?	2,K2,CO2
4.	Define skin effect.	2,K1,CO2
5.	Why short circuit stubs are preferred over open circuit stubs?	2,K2,CO3
6.	Find the location of first voltage maxima from the load of a line if the line reflection coefficient is $K=0.47 \angle -45^{\circ}$.	2,K3,CO3
7.	Why TEM mode is not possible in waveguide?	2,K2,CO4
8.	What is dominant mode? Give the dominant mode of TE and TM waves of rectangular waveguide.	2,K1,CO4
9.	What are Mixers? What are its basic characteristics?	2,K1,CO6
10.	What is Low noise amplifier? List its applications.	2,K1,CO6

PART - B ($5 \times 13 = 65$ Marks) Answer ALL Questions

11. a) A generator of 1V, 1000 cycles, supplies power to a 100 mile open ^{13,K3,CO1} wire line terminated in 200 ohms resistance. The line parameters are R = 10.4 ohms per mile, L = 0.00367 Henry per mile, G = 0.8×10^{-6} mho per mile, C = 0.00835 µF per mile. Estimate the following parameters; Reflection coefficient, Sending end impedance, Sending end current, Receiving end current, Receiving end voltage, Input power, Power delivered to the load and Efficiency of transmission line.

OR

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

11806

- b) Derive the expression for voltage and current at any point on a 13, K2, CO1 transmission line in terms of receiving end voltage and current. Also derive it for a line terminated by Z₀.
- 12. a) Derive the expression of input impedance of a dissipationless line. 13,K2,CO2 Also derive it for open and short circuited lines.

OR

b)

- (i) Define standing wave ratio and derive its expression. (ii) An antenna as a load on a transmission line produces a standing wave ratio of 2.8 with a voltage minimum 0.12λ from the antenna terminals. Compute impedance at the antenna terminals if Ro = 300Ω for the line. (i) Define standing wave ratio and derive its expression. 6,K2,CO2 7,K3,CO27,K3,CO2
- 13. a) Derive the expression of location and length of a single stub connected 13,K2,CO3 in parallel with the line.

OR

- b) A 50 Ω lossless transmission line is to be matched with a 105 + j40 Ω ^{13,K3,CO3} load using single stub at 30 MHz. Estimate the stub length and its distance from the load using SMITH CHART.
- 14. a) Derive the field components of TM waves of a parallel plate 13,K2,CO4

OR

- b) Analyze the propagation of TE waves in a rectangular waveguide with 13,K2,CO4 necessary expressions for the field components.
- 15. a) (i) Discuss the operation of High Electron mobility transistor.7,K2,C06(ii) What is VCO? Derive the expression of its resonant frequency.6,K2,C06

OR

b) Explain the significance of RF amplifier. Derive the expression of its 13,K2,CO6 transducer power gain.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) (i) Derive the TE field components of circular waveguide. (ii) A circular waveguide has an internal diameter of 6cm. For a 9 GHz $_{5,K3,CO4}^{5,K3,CO4}$ signal propagated in the TE₁₁ mode, Compute cut-off frequency and characteristic impedance [(ha) ₁₁ = 1.84].

OR

- b) (i) A 30m long lossless transmission line with $Zo = 50 \Omega$ operating at ^{10,K3,CO3} 2 MHz is terminated with a load $Z_L = 60+j40 \Omega$. If v= 0.6c on the line, using SMITH CHART evaluate the reflection coefficient, standing wave ratio and input impedance.
 - (ii) Explain the significance and applications of Smith chart. 5,K2,CO3

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 11806