Reg. No.

Question Paper Code

11866

B.E./B.Tech. - DEGREE EXAMINATIONS, APRIL/MAY 2023

Fifth Semester

Electronics and Communication Engineering 20ECEL508 - CONTROL SYSTEMS ENGINEERING

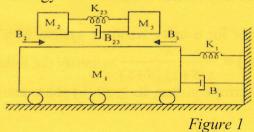
(Regulations 2020)

(Semi-log Graphs and Polar Chart need to be provided)

Duration: 3 Hours

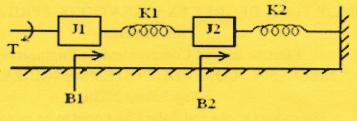
Max. Marks: 100

13 JUN 2023


Answer ALL Questions

PART-A $(10 \times 2 = 20 \text{ Marks})$

		Marks, K-Level, CO
1.	Compare open loop and closed loop control system.	2,K2, CO1
2.	What are the basic elements used for modelling mechanical translational system?	2,K1,CO1
3.	Draw the block diagram representation of a state model.	2,K2,CO2
4.	What is controllability?	2,K1,CO2
5.	Choose how the system is classified depending on the value of damping.	2,K3,CO3
6.	What is the effect on system performance when a proportional controller is introduced in a system?	2,K1,CO3
7.	List out the different frequency domain specifications.	2,K1,CO4
8.	Analyze the necessary conditions for stability.	2,K4,CO5
. 9.	Analyze how to find the gain K at a point on root locus.	2,K4,CO5
10.	Explain the need for lag/lag-lead compensation.	2,K2,CO6


PART - B $(5 \times 13 = 65 \text{ Marks})$ Answer ALL Questions

11. a) Develop the differential equations governing the mechanical ^{13,K3,CO1} translational system shown in Figure 1. Draw the electrical equivalent analogy circuits.

b) Write down the differential equation governing mechanical system ^{13,K3,C01} shown Figure 2. Draw the torque voltage and torque current electrical analogous circuit.

- 12. a) Develop the response of underdamped second order system for unit ^{13,K3,CO3} step input.
 - OR
 - b) A unity feedback system has the forward transfer function $13,K3,CO_3$ $G(s) = \frac{K1(2S+1)}{S(5S+1) (1+S)^2}$ when the input r(t)=1+6t, Solve the minimum value of K1 so that the steady error is less than 0.1.
- 13. a) Sketch the bode plot for the following transfer function and *13,K3,C04* determine phase margin and gain margin. $G(s) = \frac{75(1+0.2S)}{S(S^2+16S+100)}$

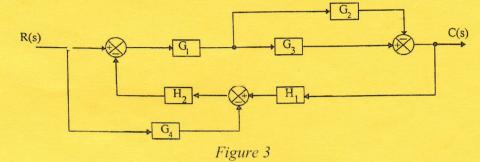
- b) The open loop function of a unity feedback system is given by $I_{3,K3,CO4}$ $G(s) = \frac{1}{[S(1+S)(1+2S)]}$. Sketch the polar plot and determine the gain and phase margin.
- 14. a) The characteristic polynomial of a system is, 13,K3,CO5 $s^{7}+9s^{6}+24s^{5}+24s^{4}+24s^{3}+24s^{2}+23s+15=0$. Determine the location of roots on S-plane and hence the stability of the system.
 - b) Sketch the root locus of the system whose open loop transfer function ^{13,K3,C05} is, $G(s) = \frac{K}{S(S+2)(S+4)}$. Determine the value of K so that the damping ratio of the closed loop system is 0.5.
- 15. a) Design a lead compensator for a unity feedback system with open 13,K3,C06 loop transfer function, $G(s) = \frac{K}{S(S+1)(S+5)}$ to satisfy the following specifications (i) velocity error constant, $K_v \ge 50$ (ii) phase margin is $\ge 20^{\circ}$.

OR

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 11866

OR

For the given system, $G(s) = \frac{K}{S(S+1)(S+2)}$. Design a suitable laglead compensator to give, velocity error constant=10sec⁻¹, phase margin=50, gain margin>=10dB.


b)

PART - C $(1 \times 15 = 15 \text{ Marks})$

Discuss the concepts of Kalman's test for controllability and 15,K2,CO2 16. a) observability and explain the condition for complete state controllability in the S- Plane.

OR

b) Draw a signal flow graph and develop the closed loop transfer function 15,K2,CO2 of a system whose block diagram is shown in Figure 3.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 11866

3