Reg. No.	

Question Paper Code

11918

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL/MAY 2023

Fifth Semester

Electronics and Communication Engineering

(Common to Sixth Semester - Computer and Communication Engineering)

20ECPW501 - DISCRETE TIME SIGNAL PROCESSING WITH LABORATORY

(Regulations 2020)

Duration: 3 Hours

Max. Marks: 100

PART - A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions

1.	State DFT pair equations.	Marks, K-Level, CO 2,K1,CO1
2.	Obtain the circular convolution of the following sequences $x(n) = \{1, 2, 1\}$, $h(n) = \{1, -2, 2\}$ using Matrix method.	2,K2,CO1
3.	List the properties of Chebyshev type-1 filters.	2,K1,CO2
4.	Why analog approximation is required to design a digital filter?	2,K2,CO2
5.	State the desirable characteristics of the window function.	2,K1,CO4
6.	Why FIR filters are called linear phase filters?	2,K2,CO4
7.	Why rounding is preferred over truncation in realizing digital filter?	2,K2,CO5
8.	Express the number 7_{10} in floating point format with five bits for mantissa and three bits for exponent.	2,K2,CO5
9.	What are the four phases available in pipeline technique?	2,K1,C06
10.	Write a short note on the MAC unit in Digital Signal Processors.	2,K2,CO6

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11. a) Compute the 8 point DFT of the following sequence using DIF-FFT 13,K3,CO1 algorithm. $x(n) = \{1,1,1,1,1,1,1,1\}$

OR

- b) Perform the linear filtering of finite duration sequences $h(n)=\{1, 2\}$ 13,K3,C01 and $x(n)=\{1, 2, -1, 2, 3, -3, -2, -1, 1, 2, -1\}$ by overlap save method.
- 12. a) Apply Butterworth approximation procedure to design an analog low 13,K3,CO2 pass filter with the following specifications.

Pass band attenuation: 2dB. Stop band attenuation: 14dB.

Pass band frequency: 6627.42 rad/sec. Stop band frequency: 16000 rad/sec.

b) Obtain an analog Chebyshev filter transfer function that satisfies the 13,K3,CO2 constraints.

$$\frac{1}{\sqrt{2}} \le |H(j\Omega)| \le 1; 0 \le \Omega \le 2$$

$$|H(j\Omega)| < 0.1; \Omega > 4$$

13. a) Design a FIR low pass filter having the following specifications using 13,K3,CO4 Hanning window.

$$H_d(e^{jw}) = \begin{cases} 1 & -\frac{\pi}{6} \le |\omega| \le \frac{\pi}{6} \\ 0 & Otherwise \end{cases}$$

With N=7 and plot the frequency response.

OR

b) Determine the coefficients of a linear phase FIR filter length M=15 13,K3,C04 which has a symmetric unit sample response and a frequency response that satisfies the conditions.

$$H\left(\frac{2\pi k}{15}\right) = \begin{cases} 1 & \text{for } k = 0.1.2.3 \\ 0 & \text{for } k = 4,5,6,7 \end{cases}$$

- 14. a) The output of an A/D converter is applied to a digital filter with the system function; $H(z) = \frac{0.5z}{z-0.5}$ Estimate the output noise power.
 - b) Explain the characteristics of a limit cycle oscillation with respect to 13,K2,C05 the system described by the equation $y(n) = 0.95 \ y(n-1) + x(n)$, when the product is quantized to 5-bits by rounding (including the sign bit). The system is excited by an input x(n) = 0.75 for n = 0 and x(n) = 0; otherwise.

 Also, determine the dead band of the filter.
- 15. a) Draw the schematic block diagram of the architecture of TMS320C5X 13,K3,C06 Processor and explain the major block diagram of the same.
 - b) Explain the direct addressing of TMS320C5X processor and write a 13,K3,C06 program to understand the direct addressing mode of DSPs with an example.

PART - $C(1 \times 15 = 15 \text{ Marks})$

16. a) Design a Chebyshev filter for the following specifications using 15,K3,C03 Impulse Invariance mapping method. $0.8 \le |H(e^{j\omega})| \le 1 \text{ for } 0 \le \omega \le 0.2\pi$ $|H(e^{j\omega})| \le 0.2 \text{ for } 0.6\pi \le \omega \le \pi$

Use suitable structure to realize the filter.

b) Build the direct form II, cascade and parallel forms for the system 15,K3,C03 given by y(n) = -0.1y(n-1) + 0.72y(n-2) + 0.7x(n) - 0.252x(n-1).