|--|

Question Paper Code

12023

8 101 2023

B.E./B.Tech - DEGREE EXAMINATIONS, APRIL / MAY 2023

Third Semester

Electronics and Communication Engineering 20ECPC301 - DIGITAL ELECTRONICS

(Regulations 2020)

Duration: 3 Hours

Max. Marks: 100

PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions

		Marks, K-Level, CO
1.	Prove the following using De Morgan's Theorem, $[(x+y)' + (x+y)']' = x+y.$	2,K1,CO1
2.	Interpret the function $Y = A + B'C$ in canonical POS.	2,K2,CO1
3.	Implement Full adder using two half adders.	2,K2,CO2
4.	Differentiate a decoder from a demultiplexer.	2,K2,CO2
5.	Realize T Flip Flop using SR Flip Flop.	2,K2,CO3
6.	The content of a 4-bit register is initially 1101. The register is shifted 6 times to the right with the serial input being 101101. What is the content	2,K2,CO3
	of the register after each shift?	2,K1,CO4
7.	What is called dynamic hazard in asynchronous sequential circuit?	2,K1,CO4
8.	Distinguish between non-critical race and critical race.	
9.	Why totem pole outputs cannot be connected together?	2,K2,CO5
10.	A certain memory has a capacity of 32K x 16. How many bits are there in each word? How many words are being stored and how many memory cells does this memory contain?	2,K2,CO5
	PART - B (5 × 13 = 65 Marks) Answer ALL Questions	
11.	 a) Simplify the following Boolean expression using K map and draw the logic diagram. F=∑m(1,4,8,10,11,20,22,24,25,26)+d(0,12,16,17) 	13,K2,CO1
	OR	13,K2,CO1
	b) Implement the following function using Quine McCluskey method. $F = \sum m (6, 7, 8, 9) + d (10, 11, 12, 13, 14, 15).$	13,112,001
12.	a) Design a 4-bit BCD adder using full adder and explain its structure and compute the circuit to add 1001 and 0101. Write the sum and carry output of the given binary number.	
		10002

		OR	
	b)	Design 3-bit magnitude comparator using logic gates.	13,K3,CO2
13.	a)	Design a synchronous 3-bit counter which counts in the sequence 1, 3, 2,6, 7, 5, 4,(repeat) 1,3 using T FF. OR	13,K3,CO3
	b)	A sequential circuit has two JK flip-flops A and B, two inputs x and y and one output z . The flip-flop input equations and circuit output equation are: $J_A = Bx + B'y'J_B = A'x$ $K_A = B'xy'K_B = A + xy'z = Axy + Bx'y'$ Draw the logic diagram and state table of the circuit. Also derive the state equations for A and B.	13,K3,CO3
14.	a)	An asynchronous sequential circuit is described by the following excitation and output function. $Y = X_1X_2' + (X_1 + X_2')Y$, $Z = Y$	
		(i) Draw the logic diagram.	5,K3,CO4
		(ii) Derive the transition table and output map.	4,K3,CO4
		(iii) Describe the behaviour of the circuit. OR	4,K3,CO4
ij,sas • •	b)	What is the objective of state assignment in an asynchronous circuit? Give the hazard free realization for the Boolean function $f(A, B, C, D) = M(0, 2, 6, 7, 8, 10, 12)$.	13,K3,CO4
15.	a)	Design and implement a BCD to Gray code converter using PLA. OR	13,K3,CO5
	b)	Select a 4096 x 8 bit ROM memory to store the driver program of the Robotic design. The memory chip of has two chips select inputs and	13,K3,CO5
		operates from a 5v power supply. How many pins are needed for the	
		integrated circuit package? Draw a block diagram and label all input and output terminals in the ROM.	
		PART - C $(1 \times 15 = 15 \text{ Marks})$	
16.	a)	Design an even parity generator that generates an even parity bit for	15,K3,CO6

15,K2,CO6

every input string of 3-bits.

b) Explain the operation of TTL with neat diagram.

OR