Reg. No.																
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code 13384

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2025

Eighth Semester

Civil Engineering

20CEEL806 - LIFE CYCLE ASSESSMENT

Regulations - 2020

Du	ration: 3 Hours	Max. Mar	ks: 1	.00
	PART - A (MCQ) $(10 \times 1 = 10 \text{ Marks})$	Marks	<i>K</i> –	CO
	Answer ALL Questions			
1.	The primary step in Life Cycle Assessment (LCA) is	1	<i>K1</i>	CO1
	(a) Inventory analysis (b) Goal and scope definition			
2	(c) Impact assessment (d) Interpretation	1	V1	COL
2.	Which of the following is typically not included in LCA impact assessment?	1	K1	CO1
3.	(a) Energy consumption (b) Land use (c) Water pollution (d) Profit marg ISO standard provides principles and framework for Life Cycle Assessment.		K1	CO2
٥.	(a) ISO 14044 (b) ISO 14040 (c) ISO 9001 (d) ISO 26000	-		002
4.	The widely used software tool for conducting LCA is	1	K1	CO2
	(a) AutoCAD (b) Revit (c) SimaPro (d) MATLAB			
5.	Which of the following is NOT considered one of the three pillars of sustainability?	1	<i>K1</i>	CO3
	(a) Economic (b) Cultural (c) Environmental (d) Social			
6.	One of the main principle of green engineering is	1	K1	CO3
	(a) Avoid using renewable materials (b) Design for commercial advertising			
7	(c) Prevent waste rather than treat it (d) Use more energy for durability	7	V1	CO1
7.	of the following materials has a high embodied energy?	1	K1	CO4
8.	(a) Timber (b) Rammed earth (c) Aluminum (d) Straw bale Identify the factor that increases the embodied energy of a material.	1	K1	CO4
0.	(a) Local sourcing (b) Minimal processing	•	111	007
	(c) Use of recycled content (d) Long-distance transportation			
9.	Total initial embodied energy is the sum of	1	K1	CO5
	(a) Operating and recurring energy			
	(b) Construction and lighting energy			
	(c) Direct and indirect embodied energy used before building occupancy			
	(d) Renewable energy and demolition energy			
10.	Which of the following is a recognized green building rating system?	1	K1	CO6
	(a) ISO 9001 (b) GRIHA (c) SWOT (d) PMI			
	DADT D (12 v. 2 24 Mordes)			
	PART - B $(12 \times 2 = 24 \text{ Marks})$ Answer ALL Questions			
11.	Recall the goal of Life Cycle Assessment.	2	K1	CO1
	Show the purpose of inventory data analysis in Life Cycle Assessment.	2	K1	CO1
			K1	CO2
	List the different Life Cycle Assessment methods to evaluate the environmental impact	2 2	K2	CO2
14.	Compare the features of SimaPro and GaBi software tool. Demonstrate the parameters affecting resource use in the building life cycle.			
15.	2	K1	CO3	
16.	Define construction ecology.	2	K1	CO3
17.	What is meant by embodied energy?	2	K1	CO4
18.	Recall any two examples of high embodied energy materials.	2	K1	CO4
19.	What are the two ways to reduce the operating energy of a building?	2	K1	CO5
K1 -	- Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create		133	84

20.). Why is it important to consider demolition energy in LCA of buildings?				
21.	1. Relate the purpose of using carbon footprint calculators in construction projects.				CO
22.	List two benefits of using green building rating systems.				CO
		PART - C $(6 \times 11 = 66 \text{ Marks})$ Answer ALL Questions			
23.	a)	Explain the challenges in collecting reliable life cycle inventory data for a multi-material product.	11	K2	CO
		OR			
	b)	Illustrate how the selections of different Life Cycle Impact Assessment methods influence the decision-making in product design.	11	K2	CO
24.	a)	Explain how ISO 14044 ensures transparency and consistency in LCA studies. OR	11	K2	CO.
	b)		11	<i>K</i> 2	co
	b)	Demonstrate the role of LCA software tools in reducing human error and increasing efficiency in environmental impact analysis.	11	K2	CO.
25.	a)	Identify how urban construction contributes to climate change, and suggest systemic changes in the built environment to mitigate these impacts. OR	11	К3	CO.
	b)	Construct a roadmap for achieving sustainability in the built environment of a growing city. What policy, design, and stakeholder actions would be essential?	11	К3	CO.
26.	a)	Illustrate a construction strategy for a residential building that minimizes embodied energy without compromising structural integrity. OR	11	K2	CO-
	b)	Interpret how digital tools and embodied energy databases influence green certification outcomes and long-term sustainability planning.	11	K2	CO
27.	a)	Demonstrate how building use patterns (e.g., residential vs. commercial) influence operating energy demands. Also, explain how the design can adapt to those needs? OR	11	K2	CO
	b)	Explain the sustainability benefits of designing buildings for disassembly to reduce demolition energy and material waste.	11	K2	CO.
28.	a)	If a construction project switches from conventional to modern construction, how would that impact on-site energy use? Explain the potential benefits and limitations.	11	K2	CO
		OR			
	b)	Show, with a case study, how integrating real-time energy monitoring tools with LCA and green rating systems could transform post-occupancy sustainability management.	11	K2	CO