Reg. No.																
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code

13391

B.E. / **B.Tech.** - **DEGREE EXAMINATIONS, APRIL** / **MAY 2025**

Eighth Semester

Electrical and Electronics Engineering

20EEEL809 - BIG DATA ANALYTICS FOR SMART GRID

Regulations - 2020

	Regulations - 2020			
Dι	ration: 3 Hours	Max. Marl	ks: 10	00
	16.7	<i>K</i> –	GO.	
	Answer ALL Questions	Marks	Level	co
1.	Which of the following is a key feature of a smart grid?	1	K1	CO1
	(a) Centralized energy distribution (b) Use of fossil fuels			
	(c) Two-way communication C (d) Manual meter reading			
2.	What technology is essential for monitoring and managing a smart grid?	1	K1	CO1
	(a) Analog meters (b) IoT (Internet of Things)			
	(c) Coal-fired power plants (d) Gas turbines			
3.	Which method is commonly used for scheduling in power systems?	1	K1	CO2
	(a) Stochastic optimization (b) Deterministic optimization			
	(c) Heuristic optimization (d) Genetic algorithms			
4.	What is the primary goal of Online Dynamic Security Assessment (DSA) in power systems?	1	K1	CO2
	(a) Reduce operational costs (b) Enhance market efficiency			
	(c) Ensure system stability in real-time (d) Increase power generation			
5.	Which of the following best defines analytics?	1	<i>K1</i>	CO3
	(a) The process of collecting raw data			
	(b) The systematic computational analysis of data			
	(c) Guessing future trends based on intuition			
	(d) Manually processing data without tools			
6.	Which is NOT a typical stage in the analytics process?	1	K1	CO3
	(a) Data Collection (b) Data Cleaning (c) Data Guessing (d) Data			
	Visualization			
7.	Which component in big data architecture is primarily responsible for storing large	1	K1	CO4
	volumes of raw data?			
	(a) Data Lake (b) Data Warehouse			
	(c) Stream Processing Engine (d) Data Visualization Tool	_		
8.	Physics-based Numerical Weather Prediction (NWP) is primarily used for forecasting	1	K1	CO4
	which of the following in smart grids?			
	(a) Electricity Prices (b) Renewable Energy Generation			
0	(c) Customer Demand Patterns (d) Cybersecurity Threats	1	V1	COF
9.	Which of the following is NOT a common cause of bad data in machine learning applications?	1	K I	CO5
	(a) Sensor failures (b) Data corruption during transmission			
	(c) Properly labeled training data (d) Human entry errors			
10.	What is one of the major emerging trends in Big Data Analytics at the distribution level	el I	<i>K1</i>	CO6
	grid?			
	(a) Manual meter reading			
	(b) Integration of artificial intelligence and machine learning			
	(c) Increased reliance on fossil fuels			
	(d) Disconnection of renewable energy sources			

PART - B $(12 \times 2 = 24 \text{ Marks})$

Answer ALL Questions

		Answer ALL Questions				
11.	Defin	e Smart Grid.	2	<i>K1</i>	CO1	
12.	State the satellite communication enhances modern power systems.					
13.	Differentiate between data and analytics.					
14.	Define an analytical model and explain why it is important.					
15.	List the main objective of analytics in decision-making.					
16.	Differentiate between data and analytics.					
17.	State	the role of Data Lakes in big data architecture for smart grids.	2	<i>K1</i>	CO4	
18.	State	the Missing Sensor Restoration (MSR) and give its important in smart grids.	2	K1	CO4	
19.	Why	is bad data detection crucial in machine learning applications?	2	K1	CO5	
20.	How	can machine learning improve bad data detection?	2	K1	CO5	
		I the techniques are used for real-time data analysis in distribution grids.	2	K1	CO6	
22.	Sumn	narize the methods used for anomaly detection in Smart Grids.	2	K2	CO6	
		PART - C $(6 \times 11 = 66 \text{ Marks})$ Answer ALL Questions				
23.	a)	Explain the concept of a Smart Grid and discuss its key features, advantages, and how it differs from a traditional power grid.	11	K2	CO1	
		OR				
	b)	Describe in detail about Phasor Measurement Unit, and explain how it functions as an intelligent data collection device in the Smart Grid.	11	K2	CO1	
24.	a)	Explain the deterministic optimization methods be used to improve power scheduling efficiency in smart grids.	11	K2	CO2	
	b)	OR Explain the strategies can optimize wide-area power flow control to minimize	11	K2	CO2	
	0)	congestion.				
25.	a)	Describe the fundamental differences between descriptive, diagnostic, predictive, and prescriptive analytics in the context of energy systems.	11	K2	CO3	
	L)	OR	11	K2	CO3	
	b)	Explain the analytical models support decision-making processes in utility management and energy distribution.	11	K2	003	
26.	a)	Indentify how the Artificial Neural Networks are used for short-term load forecasting in smart grids.	11	К3	CO4	
		OR				
	b)	Build the process of Missing Sensor Restoration (MSR) in intelligent sensing for smart grids.	11	К3	CO4	
27.	a)	Build the effectiveness of machine learning models in detecting and classifying bad data in real-time systems.	11	К3	CO5	
		OR				
	b)	Contrast the effectiveness of SVM, nearest neighbor, RNNs, and LSTMs for detecting anomalies in datasets.	11	K3	CO5	
28.	a)	Demonstrate how key methods and technologies are used in fault detection and isolation in Smart Grids.	11	K2	CO6	
		OR				
	b)	Describe the impact of big data and artificial intelligence on the future of smart grids.	11	K2	CO6	