		Reg. No.								
	Question Paper Code	12575	5							
	B.E. / B.Tech DEGREE EXAMIN	NATIONS, A	AP	RIL	/ N	IAY	202	4		
	Eighth Ser	nester								
	Artificial Intelligence a	and Data Sc	cien	ce						
	20AIEL802 - INTEGRATED	DATA MAN	NA	GEN	IE	NT				
	Regulation -	2020								
Du	ration: 3 Hours					Ν	lax.	Ma	rks:	100
	PART - A (10 × 2 = Answer ALL Qu	20 Marks) uestions						Mark	K– Leve	со
1.	List out the OLAP Operations.							2	K1	<i>CO1</i>
2.	Define data cube.							2	K1	<i>CO1</i>
3.	Why we need to Pre-process the data? Justify.							2	K1	<i>CO2</i>
4.	Compare descriptive and predictive data mining	ng.						2	K2	<i>CO2</i>
5.	Write constraint based association mining.							2	K1	CO3
6.	Draw the conditional FP_Tree.							2	K1	CO3
7.	State the uses of decision trees in data mining							2	K1	<i>CO4</i>
8.	Define data classification.							2	K1	<i>CO4</i>
9.	Interpret the cluster analysis.							2	K2	CO5
10.	Give the applications of data mining.							2	K1	<i>CO5</i>
	PART - B (5 × 13 =	65 Marks)								

Answer ALL Questions

11.	a) i) Explain the three- tier data warehouse architecture with neat diagram.	13	K2	<i>CO1</i>
	OR			
	b) i) Compare the types of OLAP Servers.	7	K2	CO1
	 ii) A Data Cube C, has n dimensions and each dimension has exactly P distinct values what is the maximum, minimum number of cells possible in the base cuboid. 		K2	<i>CO1</i>
12.	a) i) Interpret the different types of data in which mining can be performed.	5	K2	<i>CO2</i>
	ii) Illustrate the architecture of a typical data mining system.	8	K2	<i>CO2</i>
	OR			
	b) i) Discuss about the major issues in data mining.	8	K2	<i>CO2</i>
	ii) Summarize the various functionalities of data mining.	5	K2	<i>CO2</i>

13.	a)	Compare and contrast between association and correlation with	1 <i>13</i>	K2 CO3			
		OR					
	b)	Analyze various kinds of mining association rules with example.	13	K4 CO3			
14.	a)	Apply the naive bayesian classification algorithm in data mining.	13	K3 CO4			
		OR					
	b)	Illustrate the decision tree induction algorithm in data mining.	13	K3 CO4			
15.	a)	Explain the various clustering methods used in data mining.	13	K2 CO5			
	OR						
	b)	Discuss in detail about the outlier detection and analysis.	13	K2 CO5			
		PART - C (1 × 15 = 15 Marks)					
16.	a)	Illustrate the various application used in data mining.	15	K3 CO6			

OR

b)	Analyze the data mining task primitives with neat diagram.	15	<i>K4</i>	<i>CO6</i>
----	--	----	-----------	------------