	Reg. No.				
	Question Paper Code12852				
	B.E. / B.Tech DEGREE EXAMINATIONS, APRIL / MAY 202	24			
	Third Semester				
	Artificial Intelligence and Data Science				
	20AIPC302 - FUNDAMENTALS OF MACHINE LEARNING TECHN	IQU	ES		
	Regulations - 2020				
Du	ration: 3 Hours Max	. Ma	rks:	100	
	PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Ouestions	Mark	K– S Level	CO	
1.	What are the types of machine learning?	2	K1	COI	1
2.	List out any 5 real-time applications of Machine Learning.	2	Kl	COI	1
3.	How to handle Missing or Corrupted Data in a Dataset?	2	K1	CO2	?
4.	How classification varies from regression?	2	K1	CO2	?
5.	State TP, FP, FN, TN for disease prediction into Benign & Malignant tumor assuming 'Benign' as a class of win.	2	K1	CO3	}
6.	What is Data Pre-processing?	2	K1	CO3	}
7.	How can the accuracy of Simple Linear regression be improved?	2	K2	<i>CO</i> 4	1
8.	List some of the common regression Algorithms.	2	K1	<i>CO</i> 4	1
9.	What are Clustering and its types?	2	K1	COS	5
10.	State the main difference in the approach of k-means and k-medoids algorithms.	2	K2	COS	5
	PART - B (5 × 13 = 65 Marks) Answer ALL Questions				

11.	a)	Explain in detail about the types of Machine learning with necessary	13	K2	COI
		diagrams.			

OR

- b) How Machine Learning algorithms help in detecting fraudulent ¹³ K² CO1 activities in Banking? Also state some of the real-time software used.
- 12. a) i) How the Performance of the Regression is calculated?
 ii) Distinguish between Lazy Learner and Eager Learner.
 OR
 - b) How Numerical Data is Explored? Explain in detail. 13 K2 CO2

12852

13. a) Consider the training dataset given in the following table. Use ¹³ K3 CO3 Weighted k-NN and determine the class. Test instance (7.6, 60, 8)and K=3.

S.No.	CGPA	Assessment	Project Submitted	Result
1	9.2	85	8	Pass
2	8	80	7	Pass
3	8.5	81	8	Pass
4	6	45	5	Fail
5	6.5	50	4	Fail
6	8.2	72	7	Pass
7	5.8	38	5	Fail
8	8.9	91	9	Pass

- b) Explain in detail about Support Vector Machines with algorithms and ¹³ K² CO³ state the role of hyper planes.
- 14. a) Define simple linear regression using a graph explaining slope and ¹³ K² CO4 intercept also Explain rise, run, and slope in a graph.

OR

- b) Elaborate the purpose of ridge and Lasso regression, its advantages ¹³ K² CO⁴ and disadvantages.
- 15. a) List out the broad three categories of clustering techniques? Explain ¹³ K2 CO5 the characteristics of each briefly.

OR

b) Explain about Partitioning Clustering Algorithm and its various types ¹³ K² CO5 of partitioning algorithms.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Apply Apriori Principle for Association rule learning with any ¹⁵ K3 CO6 Supermarket Dataset. Formulate the strong rules for the considered dataset.

OR

b) You are given a set of one-dimensional data points: {5, 10, 15, 20, 25, 15 K3 CO6 30, 35}. Assume that k = 2 and first set of random centroid is selected as {15, 32} and then it is refined with {12, 30}.
(i) Create two clusters with each set of centroid mentioned above following the k-means approach.
(ii) Calculate the SSE for each set of centroid.

12852