Reg. No.								

Question Paper Code 13206

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2024

Third Semester

Computer Science and Engineering (AIML)

20AIPC401 - FUNDAMENTALS OF ARTIFICIAL INTELLIGENCE

Regulations - 2020

Dυ	ration: 3 Hours	Max. Mai	rks: 1	00
	PART - A (MCQ) $(20 \times 1 = 20 \text{ Marks})$		<i>K</i> –	
	Answer ALL Questions	Marks	K – Level	co
1.	The agents try to maximize their own expected "happiness."	1	<i>K1</i>	CO1
	(a) Simple Reflex agent (b) Model Based Reflex agent			
	(c) Goal Based agent (d) Utility Based agent			
2.	Aenvironment is one in which actions are characterized by their poss	ible 1	<i>K1</i>	CO1
	outcomes, with no probabilities are attached to them.			
	(a) Nondeterministic (b) Deterministic (c) Stochastic (d) Discrete			
3.	In a chess-playing environment, Tick the appropriate one	1	K1	CO1
	(a) Observable: Fully or Partially (b) Agents: Single or Multi			
	(a) Observable: Fully or Partially(b) Agents: Single or Multi(c) Episodic: Episodic or sequential(d) Nature: Discrete or continuo	us.		
4.	operate on complete-state formulations, keeping only a small number	r of 1	<i>K1</i>	CO2
	nodes in memory.			
	(a) Hill climbing (b) Simulated annealing			
	(c) Genetic algorithm (d) Convex optimization			
5.	When the agent's percepts provide no information at all is called a proble (a) Exploration (b) Exploitation (c) Sensor less (d) All the above	em 1	K1	CO2
	(a) Exploration (b) Exploitation (c) Sensor less (d) All the above	e		
6.	allows us to ignore portions of the search tree that make no difference to		K1	CO2
	final choice.			
	(a) Backtracking (b) Pruning (c) Random selection (d) Pathfinding			
7.	Knowledge is contained in agents in the form of sentences are stored in	1	K1	CO3
	(a) knowledge base (b) Environment (c) Database (d) All the above			
8.	Propositional logic is a simple language consisting ofand log	ical ¹	<i>K1</i>	CO3
	connectives.			
	(a) Logical symbols (b) Proposition symbols (c) Semantics (d) Predicates			~~.
9.	Which of the following logical expressions accurately represents the statement '	'All ¹	KI	CO3
	surgeons are doctors"?			
	(a) $\exists x (Surgeon(x) \land Doctor(x))$ (b) $\forall x (Surgeon(x) \rightarrow Doctor(x))$			
4.0	(c) $\forall x (Doctor(x) \rightarrow Surgeon(x))$ (d) $\exists x (Doctor(x) \land Surgeon(x))$,	77.1	GO 1
10.	What is the primary objective of planning in AI?	1	K1	CO4
	(a) To optimize the machine learning model			
	(b) To generate a sequence of actions to achieve a goal			
	(c) To classify data into categories			
1.1	(d) To detect objects in an image	1	ν_1	CO4
11.	Which of the following is a common approach to AI planning?	1	ΚI	CO4
	(a) Forward chaining (b) Reinforcement learning			
12	(c) Genetic algorithms (d) STRIPS (Stanford Research Institute Problem Solv	ver) 1	K 1	CO4
12.	What is the difference between "planning" and "search" in AI?	1	IX I	CO4
	(a) Search is a part of planning(b) Planning is a part of search			
	(c) Search involves reasoning, while planning doesn't			
	(d) There is no difference between planning and search			
	(a) There is no unforcine between planning and scaren			
17.1			122	006

13.	A model of the probability distribution of n-letter sequences is thus called a	1	<i>K1</i>	CO ₅
	(a) language model (b) n-gram (c) Markov chain model (d) Corpus			
14.	is the task of finding documents that are relevant to a user's need for	1	K1	CO5
	information			
	(a) Categorization (b) Information retrieval			
	(c) Information Extraction (d) Information Processing			~~-
15.	Which of the following is a common task in NLP?	1	<i>K1</i>	CO5
	(a) Speech Recognition (b) Image Segmentation			
1.0	(c) Object Detection (d) Video Classification	1	K1	CO5
16.	What is a 'Stop Word' in NLP?	1	ΚI	COS
	(a) A word that stops the sentence from continuing(b) A frequently used word that is often removed from text during preprocessing			
	(c) A word that has no meaning			
	(d) A rare word found in text			
17.	Robots are equipped with for perceiving their environment and with	1	<i>K1</i>	CO6
1,.	which they can assert physical forces on their environment.			
	(a) Sensors and effectors (b) Effectors and sensors			
	(c) Sensors and Anchors (d) Anchors and Sensors			
18.	Calculating the configuration of a robot whose effector location is specified in workspace	1	K1	CO6
	coordinates is known as			
	(a) kinematics (b) Inverse kinematics (c) Configuration (d) Inverse configuration			
19.		1	<i>K1</i>	CO6
	(a) Pneumatic (b) Hydraulic (c) Electric (d) Gaseous	,	7.7	001
20.	Which of the following components is responsible for controlling the mechanical	1	<i>K1</i>	CO6
	movement of a robot?			
	(a) Sensor (b) Actuator (c) Processor (d) Power supply			
	DADT D (10 × 2 20 M 1)			
	PART - B $(10 \times 2 = 20 \text{ Marks})$			
	Answer ALL Questions			
21.	List the criteria to measure the performance of search strategies.	2	K1	CO1
22.	Differentiate Informed & Uninformed search. Give examples.	2	K2	CO1
23.	List out the types of hill climbing algorithm.	2	<i>K1</i>	CO2
	What is a local search algorithm and how does it differ from global search algorithms?	2	<i>K1</i>	CO2
	What are quantifiers?	2	<i>K1</i>	CO3
	•		K1	CO3
	What are categories and objects?	2		
27.	List the components of a planning system.	2	<i>K1</i>	CO4
28.	Define reactive planning.	2	<i>K1</i>	CO4
29.	What is tokenization in NLP?	2	K1	CO5
30.	Draw the figure showing the robot's perception.	2	<i>K1</i>	CO6
	PART - C $(6 \times 10 = 60 \text{ Marks})$			
	Answer ALL Questions			
2.1		10	K2	CO1
31.	,	10	K2	COI
	OR			
		10	K2	CO1
	b) Categorize the different types of Intelligent Agent with a neat diagram.	10	K2	
	b) Categorize the different types of Intelligent Agent with a neat diagram.	10	K2	
32.		10	K2	CO2

b)	Apply the logic in crypt arithmetic problem for the below Problem: No two letters have the same value. The sums of the digits must be shown in the problem. SEND +MORE	10	<i>K3</i>	CO2
a)	Build forward and backward chaining with an example.	10	К3	CO3
b)	OR Choose the steps associated with the Knowledge Engineering process and outline the concept of semantic networks in detail.	10	К3	CO3
a)	Solve the logic with step in Goal stack problem.	10	К3	CO4
	Start ON(B,A) ^ ONTABLE(A) ^ ONTABLE(C) ^ ONTABLE(D) CLEAR(B) CLEAR(C) CLEAR(D) OR CC B A D CO B CO			
b)	Develop in detail about the representation of languages for flying a plane using STRIPS language.	10	К3	CO4
a)	Describe Natural Language Processing and its applications in detail. OR	10	K2	CO5
b)	Explain word embeddings. What are the advantages and limitations of each approach?	10	K2	CO5
a)	Discuss planning and control in Robot with a diagram.	10	K2	CO6
b)	OR Explain how data from multiple sensors is combined for a beneficial robotic application.	10	K2	CO6

33.

34.

35.

36.