Reg. No.								

Question Paper Code 12975

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2024

Fourth Semester

Artificial Intelligence and Data Science 20AIPC403 - ADVANCED MACHINE LEARNING

Regulations - 2020

	Duration: 3 Hours	Max. M	Iarks:	100	
	PART - A (MCQ) (2		<i>K</i> –	co	
	Answer ALL		Marks	Level	co
1.	What type of graph is used in Directed Graphi	cal Models?	1	K1	CO1
	(a) Undirected cyclic graph	(b) Directed acyclic graph			
	(c) Undirected acyclic graph	(d) Directed cyclic graph			
2.	What type of edges are used in Undirected Gra		1	<i>K1</i>	CO1
	(a) Directed edges	(b) Undirected edges			
	(c) Weighted directed edges	(d) No edge			
3.	What is the main component used to define the UGMs?	e joint probability distribution in	1	K1	CO1
	(a) Transition probabilities	(b) Potential functions			
	(c) Marginal probabilities	(d) Conditional probabilities			
4.	Belief propagation works exactly and efficient	tly on which type of graphical model?	1	<i>K1</i>	CO2
	(a) Graphs with cycles.	(b) Directed acyclic graphs (DAGs)			
	(c) Fully connected graphs	(d) Tree-structured graphs			
5.	During conditional likelihood training, what o	ptimization method is typically used?	1	K1	CO2
	(a) Dynamic programming				
	(b) Expectation-Maximization (EM)				
	(c) Gradient-based optimization, such as stoch	astic gradient descent (SGD)			
_	(d) Belief propagation	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1/1	G02
6.	In approximate inference, which method uses		1	K1	CO2
	(a) Variational inference	(b) Belief propagation			
7	(c) Markov Chain Monte Carlo (MCMC)	(d) Dynamic programming	1	<i>K1</i>	CO3
7.	Which of the following is a commonly used M		1	ΚI	COS
	(a) Support Vector Machine (SVM)(c) Backpropagation	(b) Metropolis-Hastings(d) Naive Bayes			
8.	What is the primary objective of a Generative	• • • • • • • • • • • • • • • • • • • •	1	<i>K1</i>	CO3
0.	(a) Image classification	(b) Image generation			
	(c) Text summarization	(d) Text translation			
9.	Which component of a GAN is responsible for		1	<i>K1</i>	CO3
· .		ncoder (d) Decoder			
10.	Which component of Real NVP is responsible		1	<i>K1</i>	CO4
	(a) Gaussian noise	(b) Coupling layers			
	(c) Recurrent neural networks	(d) Skip connections			
11.	What type of transformation does Masked Au data?	toregressive Flow (MAF) apply to its	1	K1	CO4
	(a) Non-invertible transformation	(b) Affine transformation			
	(c) Recurrent transformation	(d) Symmetric transformation			

12.	Which neural network architecture is designed to estimate complex distributions by using invertible transformations?	1	K1	CO4
	(a) Masked Autoregressive Flow (MAF) (b) Real NVP (Non-Volume Preserving)			
	(c) Variational Autoencoder (VAE) (d) Generative Adversarial Network (GAN)			~~-
13.	Which of the following techniques is often used to approximate the posterior	1	K1	CO5
	distribution of parameters in Bayesian Neural Networks?			
	(a) Gradient Descent(b) ReLU Activation(c) Monte Carlo Dropout(d) Variational Inference			
14.		1	<i>K1</i>	CO5
1	(a) Monte Carlo Dropout (b) Data augmentation			
	(c) Bayesian Neural Networks (d) Both a and c			
15.	The type of uncertainty in neural networks reflects the lack of knowledge about the	1	K1	CO5
	true model parameters is (a) Enistemia un containty (b) Alectoria un containty			
	(a) Epistemic uncertainty (b) Aleatoric uncertainty (c) Statistical uncertainty (d) Parametric uncertainty			
16	What type of uncertainty refers to the uncertainty in the data or the environment in	1	<i>K1</i>	CO5
10.	which the model operates?			
	(a) Model uncertainty (b) Data uncertainty			
	(c) Epistemic uncertainty (d) Aleatoric uncertainty			
17.	Which of the following is a commonly used kernel in Gaussian Processes?	1	K1	CO6
	(a) Linear kernel (b) RBF (Radial Basis Function) kernel			
1.0	(c) Polynomial kernel (d) All of the above	1	17.1	cor
18.	What metric is typically used to evaluate the performance of time series forecasting models like DeepAR?	1	<i>K1</i>	CO6
	(a) Root Mean Squared Error (RMSE) (b) Accuracy			
	(c) Cross-entropy loss (d) Average Precision			
19.	· / · · · · · · · · · · · · · · · · · ·	1	<i>K1</i>	CO6
	correlated time series in deep learning models?			
	(a) Linear Regression (b) Recurrent Neural Networks (RNNs)			
•	(c) Naive Bayes (d) Decision Trees	1	V1	COL
20.	In multivariate time series analysis, which technique can be used to handle multiple	1	K1	CO6
	correlated variables with different temporal behaviors? (a) Dynamic Time Warping (b) Multivariate Dynamic Linear Models (DLM)			
	(c) Lasso regression (d) Convolutional Neural Networks (CNNs)			
	PART - B $(10 \times 2 = 20 \text{ Marks})$			
21	Answer ALL Questions Differentiate interpolation and extrapolation with a neat diagram.	2	K2	CO1
21.		2	K1	CO1
22.	When does Underfitting and Overfitting will occur?			CO2
23.	Point out the trade-off faced in representation learning problems.	2	K2	
24.	List the parameters of graphical model.	2	K1	CO2
25.	What do you mean by GAN?	2	<i>K1</i>	CO3
26.	Write the role of latent space.	2	<i>K1</i>	CO3
27.	In Tensor Flow Distributions, how can normalizing flows like Real NVP be implemented for density estimation?	2	K2	CO4
28.	How to modify the auto encoder to satisfy the autoregressive property?	2	K2	CO4
29.	Define causality in the context of machine learning and how it differs from	2	<i>K1</i>	CO5
	correlation.			
30.	Why is it important to consider cross-correlations when forecasting correlated time	2	K2	CO6
	series?			

PART - C (6 × 10 = 60 Marks)

Answer ALL Questions

31.	a)	Explain the Bayesian networks and illustrate the concept of occurrence of burglary with its probabilities.	10	K2	COI
		OR			
	b)	Design and explain the directed graphical model with an example.	10	K2	COL
32.	a)	Illustrate the fact regarding Learning with partially observed data and Learning conditional graphical models. OR	10	К3	CO2
	b)	Determine how to eliminate the variable while computing the marginal probability.	10	К3	CO2
33.	a)	Summarize the concept of GAN with suitable examples.	10	K2	COS
55.	u)	OR			
	1 \		10	νa	COS
	b)	Discuss the significant role of MCMC sampling.	10	K2	COS
34.	a)	Explain the key idea behind Masked Autoregressive Flow (MAF) for density estimation. How does it combine autoregressive models with normalizing flows?	10	K2	CO4
		OR			
	b)	Compare and contrast the role of TensorFlow Distributions in probabilistic programming and density estimation tasks. How do TensorFlow Distributions simplify the implementation of probabilistic models?	10	K2	CO4
35.	a)	Demonstrate how can counterfactual predictions be made using neural networks, and what are the limitations of this approach? OR	10	К3	COS
	b)	Sketch the Baysesian Network. How can a Bayesian Neural Networks be applied in counterfactual reasoning to predict the outcome of hypothetical interventions with uncertainty?	10	К3	COS
36.	a)	Illustrate how does the copula model is used to improve the ability to handle non-linear dependencies in high-dimensional time series data? OR	10	К3	CO
	b)	Distinguish the DeepAR model with traditional multivariate forecasting methods, such as Vector Autoregressive (VAR) models, in terms of flexibility, scalability, and handling uncertainty.	10	K3	CO