									1 1		r - 1	
			Reg. No.									
		Question Paper Code	12789									
	B.E. / B.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024											
Fourth Semester												
Artificial Intelligence and Data Science												
20AIPC403 – ADVANCED MACHINE LEARNING												
Regulations - 2020												
Du	ırati	on: 3 Hours					Max	к. М	larks	: 10	0	
		PART - A (10 × 2 = Answer ALL Qu	,					Ì	Marks	K – Level	со	
1. D	Diffe	erentiate interpolation and extrapolation v	vith a neat d	liagra	ım.				2	K2	CO1	
2. V	Vhe	n can an Underfitting and Overfitting wil	l occur?						2	K1	CO1	
3. P	oin	t out the trade-off faced in representation	learning pro	oblen	ns.				2	K2	<i>CO2</i>	
4. D)efi	ne junction tree calibration.							2	K1	<i>CO2</i>	
5. D)rav	v the functional diagram for variational an	uto encoder.						2	K1	CO3	
6. P	red	ict the primary disadvantage of the non-p	arametric ei	ncode	er.				2	K2	СО3	
		the two new methods for density e orks.	estimation	using	g n	nult	ilaye	er	2	K1	<i>CO4</i>	
			sity estimato	or.					2	K2	<i>CO4</i>	
			neural netwo	ork a	nd	Bay	vesia	n	2	K2	CO5	
									2	K1	CO5	
	 Summarize the difference between Standard neural network and Bayesian 2 K2 CO5 neural network. Define Meta learning. 2 K1 CO5 PART - B (5 × 13 = 65 Marks) Answer ALL Questions a) Define Bayesian networks and illustrate the concept of occurrence of 13 K2 CO1 burglary with its probabilities. 											
11.	a)	•	the concept	of o	ccu	rrer	nce c	of	13	K2	<i>CO1</i>	
	b)	Explain your understanding of Conditiand list out the advantages.	onal Rando	om F	ielo	1 (C	CRFs	5)	13	K2	CO1	
12.	a)	Summarize the junction tree. Expla algorithm can be applied on chain struct OR		•	inct	tion	tre	e	13	K2	<i>CO2</i>	
	b)	Describe about learning conditional grap	bhical model	ls wit	th e	xan	nples	5.	13	K2	<i>CO2</i>	
13.	a)	Outline in detail about Generative Ad with suitable examples.	dversarial N	Vetwo	ork	s (C	GAN	()	13	K2	<i>CO3</i>	
K1 – 1	Rem	ember; K2 – Understand; K3 – Apply; K4 – Anal 1	yze; K5 – Eva	luate;	K6	– Cr	eate		12	7 89		

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12789

- b) Explain in detail about Markov Chain Monte Carlo (MCMC) ¹³ K2 CO3 methods with suitable examples.
- 14. a) Elaborate briefly about masked autoregressive flow for density ¹³ K² CO⁴ estimation.

OR

- b) Discuss in detail about masked auto-encoder for distribution 13 K2 CO4 estimation.
- 15. a) Describe briefly about how autoregressive recurrent networks is used ¹³ K2 CO5 in probabilistic modeling.

OR

b) Compare and Contrast the meta-learning, counterfactual reasoning, ¹³ K2 CO5 causality.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Illustrate about encoder-decoder model for multivariate time series 15 K2 CO6 forecasting.

OR

b) Discuss in detail about high-dimensional multivariate forecasting. 15 K2 CO6