	Reg. No.								
	Question Paper Code 13	3102							
	B.E. / B.Tech DEGREE EXAMINATION	NS. NC)V /	DEC	C 202	24			
	Fifth Semester	10,110		220					
	Artificial Intelligence and Data	Scienc	0						
		GION							
	20AIPCS01 - COMPUTER VI	1510N							
P	Regulations - 2020								100
Du	uration: 3 Hours					Ma	ax. Ma	irks:	100
	$PART - A (MCQ) (20 \times 1 = 20 M)$	larks)					Mark	s K-	, со
1	Answer ALL Questions								
1.	(a) Object detection (b) Image of	VISION . lossific	(Nation	n			1	KI	001
	(a) Object detection (b) Image classification (d) Image segmentation								
2.	CCD stands for	,ginent	auoi	1			1	K1	COI
	(a) charged coupled detector (b) charged of	(a) charged coupled detector (b) charged coupled device							
	(c) charging coupled device (d) None of t	the me	ntioi	ned					
3.	0 represents the background and 1 represents the foreground in	1					1	K1	COI
	(a) Image Analysis (b) Binary Im	nage Ar	naly	sis					
	(c) All of the mentioned (d) None of the	he mer	ntion	ed					<i>co</i> 2
4.	Linear filtering is a technique used in image processing to:	1	• 1 4				1	KI	002
	(a) Enhance image sharpness (b) Adjust im	lage br	ighti	ness					
5	(c) Reduce image noise (d) Change in Pick out the incorrect statement about histogram equalization:) Reduce image noise (d) Change image colors.							CO2
5.	(a) Histogram equalization can improve the visual quality of images								
	(b) It can enhance the appearance of dimly lit areas in an image	e							
	(c) Histogram equalization is only useful for grayscale images								
	(d) It can be applied to both low- and high-contrast images								
6.	filter is commonly used to blur or smooth an image.						1	K1	CO2
-	(a) Gaussian (b) Median (c) Laplacian (d) Sobel						,	<i>V</i> 1	<i>c</i> 02
7.	Identify the primary purpose of using HOG features in image analysis.						1	KI	003
	(a) To enhance the color intensity of images. (b) To detect edges and corners in digital images								
	(c) To classify images based on their texture								
	(d) To capture the distribution of directions (orientations) of gradients.								
8.	SIFT stands for Scale-Invariant Feature	ds for Scale-Invariant Feature					1	Kl	CO3
	(a) translation (b) transform (c) transfer	(d) tra	ansa	ction					
9.	vision includes process image for feature extraction.						1	K1	СОЗ
10	(a) Low-level (b) Middle vision (c) High vision (d)) None	e of t	he m	entic	oned	1 1	<i>V</i> 1	<i>co</i> 4
10.	Which technique is often used to improve the performance	of gra	aph (cuts	ın pi	ractica	al ¹	Λ1	004
	(a) Approximate algorithms (b) High page	a filtari	ina						
	(a) Approximate algorithms (b) High-pass (c) Color quantization (d) Edge dete	ection	mg						
11.	What is the main limitation of graph cuts in large-scale image r	process	sing	>			1	K1	<i>CO</i> 4
	(a) They require extensive manual tuning.	L	0						
	(b) They can be computationally expensive for large graphs.								
	(c) They do not handle color images well.								
10	(d) They cannot be used for real-time applications.	1 1 .		1 1	•.1	• 1	1	VI	CO4
12.	I he ketina Net model introduced in became one of the	ne best	t mo	dels	with	single	3- 1	ΚI	04
	show object detection capabilities. (a) 2016 (b) 2017 (c) 2015				(d) 2	013			
	(0) 2017 (0) 2017				(u) 2	015			
K1 -	– Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K	6 – Cre	eate					13	102

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

13.	How can a Bayesian network be used to answer any query?	1	K1	<i>CO</i> 5				
	(a) Full distribution (b) Joint distribution							
	(c) Partial distribution (d) All of the mentioned		77.1	<i>co.</i>				
14.	What does the Bayesian network provide?							
	(a) Complete description of the problem (b) Partial description of the domain (c) Complete description of the problem (d) None of the mentioned							
15	What type of clustering is sensitive to the initial choice of clusters?	1	K1	CO5				
15.	(a) Hierarchical clustering (b) K-means clustering							
	(c) DBSCAN clustering (d) Naive Bayes clustering							
16.	What is a future trend in clustering that aims for improved performance by integrating	1	K1	<i>CO</i> 5				
with machine learning techniques?								
	(a) Using shallow learning algorithms (b) Leveraging deep learning							
17	(c) Applying traditional statistics methods (d) Relying solely on heuristic approaches							
1/.	(a) Determine the intensity of pixels in an image	1	K1	000				
	(a) Determine the intensity of pixels in an image (b) Match the following frames in a video sequence							
	(c) Analyze color variations in an image							
	(d) Apply artistic effects to an image							
18.	What is the main goal of motion tracking in parametric motion estimation?	1	K1	<i>CO6</i>				
	(a) Enhancing image quality							
	(b) Analyzing motion patterns							
	(c) Tracking the movement of objects in a video sequence							
19	(u) Estimating the camera motion in the context of image processing?							
17.	(a) A technique to estimate the depth of objects in a scene							
	(b) A method to segment images based on their color information							
	(c) A process to decompose motion into distinct layers or components							
•	(d) A transformation to adjust the perspective distortion in images							
20.	Which of the following is a common challenge in 3D object recognition?	Ι	KI	006				
	(a) Inumination changes (b) Limited processing power (c) Low resolution images (d) Lack of labeled training data							
	(c) Low-resolution images (d) Lack of labeled training data							
	PART - B $(10 \times 2 = 20 \text{ Marks})$							
Answer ALL Questions								
21.	Compare CCD and CMOS sensors.	2	K2	<i>CO1</i>				
22.	What is Computer vision?							
23.	Define affine transformation.							
24.	List the different types of derivative filters.							
25.	5. Summarize the properties of Scale-Space Analysis.							
26.	. State Key point Matching.							
27	Define min-cut							
28	Explain kernel density Estimation							
20.	Outline the process for partitioning an image							
29. 20	. Outline the process for partitioning an image.							
30.	Name the issues that have to be considered in order to define a motion representation.	2	K1	000				
	PART - C (6 × 10 = 60 Marks)							
	Answer ALL Questions	10		<i>c</i>				
31.	a) Explain pinhole and perspective projection and weak perspective in detail.	10	K2	COI				
OR								
b) Describe the various types of image sensor in detail. 10 K2 CO.								

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 13102

32.	a)	Explain Affine and Projective transformation in detail.							10	K2	<i>CO2</i>
			0	R							
	b)	Explain histogram and apply histogram equalization to the following image.								K2	<i>CO2</i>
		٦									
			2	5	3	5	2				
		-	2	5	5	5	2	-			
			2	5	3	5	2				
		F(x,y) = L	1	1	1	2	1				
Input Image											
33.	a)	Discuss the Speeded up robust features	(SI	URF	F) ar	nd it	s ste	eps in detail.	10	K2	CO3
	,	OR									
	b)	Explain GHT in detail and using Hough Transform that the following points a collinear. Also find the equation of the line $(1,2)$, $(2,3)$ & $(3,4)$.								К2	СО3
34.	a)) Outline the procedure for region splitting with an example in detail.							10	K2	CO4
	,	OR									
	b)	b) Explain hill climbing using Mean-Shift algorithm in detail.								K2	<i>CO4</i>
35.	a)) Demonstrate the clustering concept of K-means with an example.						xample.	10	K2	CO5
		OR									
	b) Illustrate Principal Component Analysis in detail with an example.							example.	10	K2	CO5
36.	a)	Explain 3D object recognition in detail.							10	K2	<i>CO</i> 6
OR											
	b)	Explain the concepts of 3D reconstruction	ion	in c	letai	1.			10	K2	<i>CO6</i>