Reg. No.									
						-	-	 	

Max. Marks: 100

Question Paper Code 13145

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2024

Fifth Semester

Artificial Intelligence and Data Science

(Common to Fourth Semester - Computer Science and Engineering (AIML))

20AIPC502 - DEEP LEARNING

Regulations - 2020

Duration: 3 Hours

	PART - A (MCQ) (20 × 1 = 20 Marks) Answer ALL Questions	Marks	K – Level	со		
1.	Which component of the biological neuron corresponds to the activation function in an artificial neuron?	1	K1	<i>CO1</i>		
	(a) Soma (b)Axon (c) Dendrites (d) Synapse					
2.	What is a common activation function used in the output layer for binary classification problems?	1	K1	<i>CO1</i>		
	(a)ReLU (b)Sigmoid (c)Tanh (d)Softmax					
3.	What is the purpose of a loss functioning a neural network?	1	K1	<i>CO1</i>		
	(a) Measure the accuracy of the model (b) Update the model's weights					
	(c) Evaluate the model's predictions (d) Quantify the error of the model					
4.	Which technique is commonly used in representation learning?	1	<i>K1</i>	<i>CO2</i>		
	(a) Principal Component Analysis (PCA) (b) Clustering					
	(c) Neural Networks (d) Decision Trees					
5.	What does the "width" of a neural network refer to?	1	<i>K1</i>	<i>CO2</i>		
	(a) The number of layers (b) The number of neurons in a layer					
	(c) The number of input features (d) The size of the output layer					
6.	What is unsupervised training in the context of neural networks?	1	<i>K1</i>	CO2		
	(a) Training with labeled data (b) Training with unlabeled data					
	(c) Training with partially labeled data (d) Training without using data					
7.	What does "striding" control in a CNN?	1	Kl	CO3		
	(a) The number of filters used (b) The depth of the convolutional layer					
	(c) How much the filter moves over the input image (d) The size of the filter					
8.	Why is max pooling often used in CNNs?	1	<i>K1</i>	CO3		
	(a) To increase the number of parameters (b) To reduce the dimensionality of the input					
	(c) To amplify the signal (d) To regularize the model					
9.	What is an application of CNNs outside image classification?	1	<i>K1</i>	CO3		
	(a) Natural language processing (b) Time series forecasting					
	(c) Speech recognition (d) All of the above					
10.	What is the key difference between Recurrent Neural Networks (RNNs) and feed forward neural networks?	1	K1	<i>CO4</i>		
	(a) RNNs have weights but feed forward networks do not					
	(a) REVIS have weights, but feed forward networks do not. (b) (RNNs maintain a hidden state across time steps, while feed forward networks do not					
	(c) RNNs are used for static data while feed forward networks are used for sequential					
	data					
	uaia. (d) Feed forward networks are always deener than RNNs					
11	What is the main advantage of a Bidirectional DNN (BDNN)?	1	K1	CO4		
11.	(a) It has fewer parameters than a unidirectional RNN	-				
	(a) It has rewell parameters than a difference interventional KINN.					
	(a) It eliminates the need for a hidden state					
	(d) It is faster to train than unidirectional RNNs					
Kl ·	– Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create		131	45		

1

12.	. In the encoder-decoder architecture, which part is responsible for producing t	he final	1	K1	<i>CO4</i>		
	output sequence?						
	(a) Encoder (b) Decoder (c) Attention mechanism (d) Inpu	t layer					
13.	. Which type of neural network is specifically designed to handle sequential data?		Ι	KI	<i>CO</i> 5		
	(a) Convolutional Neural Network (CNN) (b) Recurrent Neural Network (RNN	Ŋ					
	(c) Feed-forward Neural Network (d) Generative Adversarial Network	(GAN)					
14.	. What is a key advantage of using GRUs over LSTMs?		1	Kl	CO5		
	(a) Simpler architecture with fewer parameters						
	(b) Better at learning long-term dependencies						
	(c) More complex and flexible than LSTMs						
	(d) Capable of handling larger sequence						
15.	. What is the major benefit of using sequence-to-sequence models with a	uttention	1	K1	<i>CO5</i>		
	mechanisms?						
	(a) They reduce the computational complexity of RNNs						
	(b) They improve the learning of long-range dependencies by focusing on releva	int parts					
	of the sequence						
	(c) They enable the model to predict multiple outputs at once						
	(d) They increase the accuracy of fully connected layers						
16.	. What is the main application of a Many-to-One RNN architecture?		1	K1	<i>CO5</i>		
	(a) Text translation (b) Sentiment analysis (c) Speech recognition (d) Image classif	fication					
17.	. What type of learning does a DBN employ in its lower layers?		1	K1	<i>CO6</i>		
	(a) Supervised learning (b) Unsupervised learning						
	(c) Semi-supervised learning (d) Reinforcement learning						
18.	. What is the role of the discriminator in a GAN?		1	K1	<i>CO6</i>		
	(a) To create new images (b) To distinguish between real and fak	e data					
	(c) To optimize the generator (d) To classify the data into categories						
19.	. Deep Associative Memory Networks are particularly useful in which area?		1	K1	<i>CO6</i>		
	(a) Generative modeling (b) Pattern completion						
	(c) Video synthesis (d) Supervised learning tasks						
20.	. Which of the following components are parts of a Generative Adversarial Network	ς?	1	K1	<i>CO6</i>		
	(a) Generator and Decoder (b) Generator and Discriminate	or					
	(c) Encoder and Decoder (d) Classifier and Generator						

PART - B ($10 \times 2 = 20$ Marks)

Answer ALL Questions					
21.	Define Hyper parameters tuning.	2	K1	<i>CO1</i>	
22.	Differentiate between biological and artificial neurons.	2	K2	<i>CO1</i>	
23.	Define Over fitting.	2	K1	<i>CO2</i>	
24.	How many types of activation function are available?	2	K1	<i>CO2</i>	
25.	What are Restricted Boltzmann Machines?	2	K1	CO3	
26.	What is stride in the context of CNNs?	2	K1	CO3	
27.	What are the limitations of Bidirectional RNN?	2	K1	<i>CO</i> 4	
28.	Define LSTM.	2	K1	<i>CO</i> 4	
29.	What is the key purpose of using gradient clipping in training RNNs?	2	K1	CO5	
30.	What type of neural network is often used for detecting fake fingerprints?	2	K1	<i>CO6</i>	

PART - C ($6 \times 10 = 60$ Marks)

		Answer ALL Questions					
31.	a)	Explain the architecture of a Neural network with neat diagram.	10	K2	CO1		
		OR					
	b)	What is regularization? How does Regularization help reduce Over fitting?	10	K2	<i>CO1</i>		
32.	a)	Describe the methods of Representation Learning.	10	K2	<i>CO2</i>		
		OR					
	b)	Describe the various Activation functions RELU, LRELU and ERELU.	10	K2	<i>CO2</i>		
33.	a)	Describe the Alexnet Architecture with necessary diagrams.	10	K2	CO3		
		OR					
	b)	Write the applications of real-world applications of Convolutional neural network (CNN)	10	K2	СО3		
34.	a)	Explain the architecture of RNN with its variants.	10	K2	CO4		
OR							
	b)	Explain the different types of computational graphs. Give examples.	10	K2	<i>CO</i> 4		
35.	a)	Explain DBN and DBM with necessary examples.	10	K2	CO5		
		OR					
	b)	Explain the concepts of Forward and Backward Computational Graphs with example expressions.	10	К2	CO5		
36.	a)	Describe Deep Boltzmann Machine Architecture with necessary diagram.	10	K2	CO6		
		OR					
	b)	Explain the concept of Deep Fake Technology with example.	10	K2	<i>CO6</i>		