	Reg. No.																
--	----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code

12989

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2024

Sixth Semester

Artificial Intelligence and Data Science

20AIPW603 - OPTIMIZATION TECHNIQUES FOR PROGRAMMING WITH LABORATORY

Regulation – 2020

	Duration: 3 Hours	Ma	x. Marks:	100	
	PART - A (MCQ) ($20 \times 1 = 20 \text{ Marks})$	Marks	<i>K</i> –	co
	Answer ALI				
1.	Which of the following represents the design v		1	<i>K1</i>	CO1
_	(a) Constraints (b) Decision variables (c) Object				a
2.	KKT conditions are applicable for which type	-	1	<i>K1</i>	CO1
	(a)Linear unconstrained problems	(b) Nonlinear constrained problem	ıS		
•	(c) Unconstrained single-variable problems	· / 3 1	1	17.1	001
3.	What is the purpose of the Lagrange's method	-	1	<i>K1</i>	CO1
	(a) Solving unconstrained optimization problem				
	(b) Solving constrained optimization problems				
1	(c) Solving linear equations The Golden Section Method is used in:	(d) Finding roots of equations	1	<i>K1</i>	CO2
4.	(a) Linear programming	(b) Nonlinear programming	1	11.1	CO2
	(c) Dual simplex problems	(d) Convex programming			
5	Which method is NOT a part of linear program		1	K1	CO2
٥.	(a) Simplex Method	(b) Dual Simplex Method			
	(c) Fibonacci Method	(d) Revised Simplex Method			
6.	KKT conditions include:	(a) revised simplex weined	1	<i>K1</i>	CO2
0.		(b) Lagrangian function & stationar	rity		
	(c) Complementary slackness and feasibility	(d) All of the above	,		
7.	In the Cauchy (Steepest Descent) Method, the	` /	: 1	K2	CO3
	(a) The gradient of the objective function	,			
	(b) The second derivative of the objective func	tion			
	(c) A random search	(d) The constraint surface			
8.	What is the primary advantage of Sequential L	inear Programming?	1	<i>K1</i>	CO3
	(a) Solves nonlinear problems using linear appr	roximations			
	(b) Faster convergence for unconstrained probl	ems			
		(d) Simplifies objective functions			
9.	Which of the following is a direct search method		1	<i>K1</i>	CO3
	(a) Steepest Descent Method	(b) Simplex Method			
	(c) Newton's Method	(d) Penalty Function Method	,	77.1	GO 4
10.	Simulated Annealing is inspired by:		1	<i>K1</i>	CO4
	(a) Evolutionary processes	(b) Metal cooling and annealing			
1.1	(c) Swarm behavior	(d) Neural networks	1	K1	CO4
11.	Which operator is NOT part of the Genetic Alg		1	ΚI	C <i>O</i> 4
12	(a) Selection (b) Mutation (c) How does the Ant Colony Optimization algorit	Annealing (d) Crossover	1	K2	CO4
12.	(a) By using a population of solutions and appl	* *	1	112	007
	(b) By simulating the movement of particles in				
	(c) By using pheromones to guide the search for				
	(d) By minimizing energy levels in a system	3 650 561501011			
	() J				

13.	. Which algorithm mimics the behavior of social insects?	1	ΚI	COS		
	(a) Firefly Algorithm (b) Ant Colony Optimization					
1.4	(c) TabuSearch (d) Genetic Algorithm In the context of simulation modeling, what does "Monte Coule Simulation" primarily.	1	K2	CO5		
14.	. In the context of simulation modeling, what does "Monte Carlo Simulation" primarily involve?	1	K2	COS		
	(a) Simulation of deterministic processes (b) Optimization of linear systems					
	(c) Random sampling to generate statistical distributions of outcomes					
	(d) Solving systems of nonlinear equations					
15.	The Monte Carlo method is primarily used for:	1	K1	CO5		
	(a) Linear optimization (b) Simulation of random processes					
16	(c) Deterministic modeling (d) Elimination methods What is the graph of "legal search" in Nature Inspired Algorithms?	1	<i>K1</i>	CO5		
10.	. What is the purpose of "local search" in Nature-Inspired Algorithms? (a) To generate global solutions immediately	1	IX I	cos		
	(b) To explore nearby regions for possible improvements in the solution					
	(c) To select the best solution from a set of candidates					
	(d) To model the behavior of individual agents in the system					
17.	. Which algorithm is inspired by bee foraging behavior?	1	K1	<i>CO6</i>		
	(a) Firefly Algorithm (b) Particle Swarm Optimization					
	(c) Ant Algorithm (d) Bee Algorithm		7.7.1	<i>a</i> 0.		
18.	If you want to optimize the route for a traveling salesman, which nature-inspired	Ι	<i>K1</i>	CO6		
	algorithm would be the most suitable? (a) Partials System Ontimization (b) Ant Colony Ontimization					
	(a) Particle Swarm Optimization(b) Ant Colony Optimization(c) Simulated Annealing(d) Genetic Algorithm					
19	When applying the Bat Algorithm, which behavior do bats mimic to solve	1	K2	CO6		
1)	optimization problems?					
	(a) Echolocation for hunting and navigating					
	(b) Flying in random patterns for exploration					
	(c) Using pheromone trails to find food					
	(d) Searching for optimal solutions in groups			aa.		
20.	. Which of the following algorithms is commonly used to model the swarm intelligence	Ι	K1	CO6		
	behavior of birds or fish in optimization problems? (a) Firstly Algorithm (b) Partials Syverm Optimization					
	(a) Firefly Algorithm (b) Particle Swarm Optimization (c) Bat Algorithm (d) Cuckoo Search					
	(a) Such a Section					
	$PART - B (10 \times 2 = 20 Marks)$					
21	Answer ALL Questions	2	V 1	CO1		
	Provide an example of a design constraint in an optimization problem.	2	K1	CO1		
	. Mention the different classifications of optimization techniques.	2	<i>K1</i>	CO1		
23.	Examine the differences between the revised simplex method and the original simplex	2	K2	CO2		
2.4	method.	2	νa	CO2		
	. Differentiate between the Simplex and Dual Simplex methods.	2	K2	CO2		
	. Outline Steepest Descent method.	2	K2	CO3		
26.	26. Mention the basic terminology used in optimization.					
27.	. List three components of the genetic algorithm.	2	K1	CO4		
28.	. Compare and contrast genetic algorithms and neural network-based optimization.	2	K3	CO4		
29.	. Define modeling and describe its various phases.	2	<i>K1</i>	CO5		
	. Describe the relationship between the Cuckoo Search algorithm and Levy flight.	2	<i>K3</i>	CO6		
	$PART - C (6 \times 10 = 60 Marks)$					
	Answer ALL Questions	10	1/2	CO1		
31.	. a) Describe the procedure for applying Lagrange's method of multipliers to solve a constrained optimization problem.	10	K2	CO1		

- b) Outline and analyze the classification of optimization problems according to 10 K2 COI the number of variables and constraints.
- 32. a) Using Revised simplex method solve the LPP

 Max $z = x_1 + 2x_2$ Subject to $x_1 + x_2 \le 3$; $x_1 + 2x_2 \le 5$; $3x_1 + x_2 \le 6$; $x_1, x_2 \ge 0$
 - b) Analyze the Revised Simplex Method by comparing it with the Simplex 10 K3 CO2 Method.
- 33. a) Outline the Sequential Linear Programming (SLP) method and demonstrate its 10 K2 CO3 application in solving engineering optimization problems.

OF

- b) Examine the various direct search methods used in unconstrained optimization. 10 K2 CO3 How are these methods applied to find optimal solutions?
- 34. a) Illustrate the Genetic Algorithm and its key functions in solving optimization 10 K2 CO4 problems.

OR

- b) Clarify what fuzzy optimization techniques are and how they are used to solve 10 K2 CO4 problems with uncertain or imprecise data?
- 35. a) Describe the Bee algorithm and how its design is inspired by the behavior of 10 K2 CO5 bees in nature?

OR

- b) Analyze the Firefly Algorithm used in Nature-Inspired Optimization, 10 K2 CO5 discussing its principles, advantages, and limitations in comparison to other optimization techniques.
- 36. a) Critically evaluate the butterfly optimization algorithm, illustrating its working 10 K4 CO6 with an example and discussing its effectiveness compared to other optimization methods.

OR

b) Explain the procedure of the Bat algorithm.