		[
		Reg. No.									
	Question Paper Co	le	13103	5							
	B.E. / B.Tech DEGREE EX	AMINATI	ONS, I	NOV	/ DE	C 20)24				
	Fifth	Semester									
	Computer Science a	nd Enginee	ring (A	IML)						
	20AMPC501 - COMPUTER	-	• •		·	OCI	ESSI	NG			
		ions - 2020									
Du	ration: 3 Hours	2020						Ma	x. Ma	rks: 1	100
Du	PART - A (MCQ)	$(20 \times 1 = 20)$	Mark	e)				11142			
	Answer AL	•		.5)					Marks	K – Level	СО
1.	How many unique coordinates are required to sp			a ma	trix e	elem	ent i	n an	1	<i>K1</i>	CO1
	RGB image?	-									
•	(a) 2 (b) 3 (c) 1	1.1 1		(d) 4					1	1/1	CO1
2.	The difference in intensity between the highest a	ind the lowe	est inter	nsity	levels	5 in a	an in	lage	1	K1	CO1
	is (a) Noise (b) Saturation (c) Co	ontrast	(d) Br	iahtn	e cc					
3.	Identify the purpose of pre-processing is used fo				igittii	000			1	K3	CO1
	(a) Store image as array of pixel	1									
	(b) Remove noise from the image										
	(c) Convert the analog information of light into a										
4	(d) Obtain a distinction between object and back		1		•		• 1	1	1	K1	CO2
4.	Which feature detection algorithm uses an inte detector to find keypoints and compute descriptor		and a	Hes	sian i	matr	1X-08	ised	Ι	ΚI	002
	(a) SIFT (b) ORB (c) SUF		(d) H	arris	Corn	er D	etect	or			
5.	What is the main function of the Laplacian of Ga								1	<i>K1</i>	<i>CO2</i>
	(a) Computing the intensity gradient	× ×	<i>,</i> c								
	(b) Applying non-maximum suppression										
	(c) Detecting zero-crossings in the image intensi	ty gradient									
6	(d) Connecting weak edges to strong edges Which of the following statements is/are false?								1	K1	<i>CO2</i>
0.	(a) In canny edge detection, non-maximum su	ppression is	s done	alone	o the	dire	ection	n of			002
	gradient but not along the direction of edge.			urong	5 1110	G 11 G		.1 01			
	(b) DoG can be seen as a single non-separable	2D convol	ution o	r the	diffe	renc	e of	two			
	separable convolutions.	_						_			
	(c) The canny edge detector is a linear filter bec		the Ga	ussia	n filt	er to	blur	: the			
	image and then use linear to compute the gradier (d) DoG can be considered an approximation to										
7.	What is the main aim of Region Splitting and M		nique?						1	K1	CO3
<i>,</i> .	• • •	b) To simp	-	age re	prese	entat	ion				
		d) To rando	•	•	.						
8.	Which technique is most effective for enhancing	g the detecti	on of a	nator	nical	stru	cture	es in	1	K1	CO3
	medical imaging?	× • • •	T 1 1								
) Adaptive		-	g						
9.	(c) Edge Detection (d) What is an application of image segmentation in	Hybrid Ap							1	K1	CO3
).	·· · ·	Defect ider	-								
	e	Crop health									
		-	5								

10.	 10. How does image segmentation differ from object detection? (a) Image segmentation focuses on detecting objects within an image. (b) Object detection segments an image into regions based on object boundaries. (c) Image segmentation divides on image into regions with similar characteristics. 			<i>CO4</i>
	(c) Image segmentation divides an image into regions with similar characteristics.(d) Object detection assigns a label to each pixel in an image.			
11.	Which of the following techniques is responsible for classifying each pixel in an image with specific object classes in object recognition?	Ι	Kl	<i>CO</i> 4
	(a) Image Classification (b) Object Detection			
12	(c) Semantic Segmentation (d) Instance Segmentation Which machine learning models are widely used for 3D object classification in computer	1	K1	CO4
12.	vision tasks?	1	m	004
	(a) Generative adversarial networks (GANs) (b) Reinforcement learning			
12	(c) Convolutional neural networks (CNNs) (d) Transfer learning	1	Kl	CO5
13.	What does Roboflow provide to ensure data privacy and security? (a) Robust Measures	1	ΚI	005
	(b) Extensive Repository of Pre-trained Models			
	(c) Collaborations with Academic Institutions			
14	(d) Comprehensive Annotation Tools	1	Kl	CO5
14.	Which platform focuses on manufacturing and inspection processes?(a) PyTorch(b) TensorFlow(c) Roboflow(d) Landing AI	1	ΛI	COS
15.	What does the Real-time Monitoring feature in Landing AI enable for users?	1	Kl	CO5
101	(a) Quality Control (b) Custom Model Training			
	(c) Tracking of Processes (d) Evaluation of Model Performance			
16.	What feature of Roboflow allows users to evaluate model performance with precision?	1	K1	<i>CO5</i>
	(a) Integration with Jupyter Notebooks(b) Collaboration with Google Cloud(c) Annotation Tools(d) Performance Monitoring			
17.	How Computers interpret digital images represented as 2D or 3D matrices.	1	K1	<i>CO</i> 6
17.	(a) Through amplitude and coordinates (b) Through color representation			
	(c) Through texture analysis (d) Through intensity and location			
18.	What is the purpose of using patches around tracked points in optical flow analysis?	1	K1	<i>CO6</i>
	(a) To enhance image contrast (b) To detect edges (d) To accurately determine displacement			
19.	(c) To compute feature vectors (d) To accurately determine displacement calculates optical flow locally by assuming constant flow in small regions for	1	K1	<i>CO</i> 6
17.	motion analysis.			
	(a) Kalman Filter (b) Mean-Shift Tracking (c) Optical Flow (d) Lucas-Kanade Method			
20.	What is the primary role of dynamics in motion analysis?	1	K1	<i>CO6</i>
	(a) Focusing on motion patterns and their characteristics.			
	(b) Considering forces and their effects on moving objects.(c) Analyzing the speed and acceleration of objects.			
	(d) Evaluating the color and shape of moving objects.			
	$PART - B (10 \times 2 = 20 Marks)$			
21	Answer ALL Questions What is Computer vision?	2	K1	CO1
		2	K1	C01
	Define histogram with an example. What are the examples of feature detection techniques used in computer vision for	2	K2	CO2
23.	What are the examples of feature detection techniques used in computer vision for extracting key points and descriptors from images?	2	Π2	002
24.	List the advantages of SIFT.	2	<i>K1</i>	<i>CO2</i>
	Define pixel based segmentation.	2	K1	CO3
	Define region merging.	2	K1	CO3
	List the applications of object detection.	2	K1	<i>CO4</i>
	Write the technique to find different boundaries of the different textures in the image.	2	K1	<i>CO4</i>
_0.				

29.	What is one of the popular image processing libraries?	2	K1	CO5
30.	List the challenges of 3D computer vision.	2	K1	<i>CO6</i>

PART - C ($6 \times 10 = 60$ Marks)

		Answer ALL Questions			~~.
31.	a)	Summarize the Computer Imaging systems and its components in detail.	10	K2	<i>CO1</i>
	b)	OR List the various approaches used in Image enhancement and then discuss any one method of it.	10	K2	<i>CO1</i>
32.	a)	Explain the pre-processing steps which are essential for object recognition systems alongside feature extraction with CNNs. OR	10	К2	<i>CO2</i>
	b)	Discuss about scale and transformation invariant feature detection.	10	K2	<i>CO2</i>
33.	a)	Apply any edge detection technique to segment an object. OR	10	K3	CO3
	b)	Utilize K- means clustering method to segment an object and explain with a neat flowchart.	10	К3	СО3
34.	a)	Build an algorithm for image segmentation using a deep learning model.	10	K3	<i>CO</i> 4
	b)	Build an algorithm for image segmentation using a suitable object detection technique.	10	K3	<i>CO4</i>
35.	a)	Compare the performances of OpenCV and Pillow. OR	10	K2	CO5
	b)	Compare the performances of Tensorflow and Pytorch.	10	K2	CO5
36.	a)	Discuss the object classification methods in detail OR	10	K2	<i>CO6</i>
	b)	List the applications of computer vision in autonomous vehicle navigation. Explain an algorithm for an application with neat block diagram.	10	К2	<i>CO6</i>