		Reg.	No.					Π				
	Ouestion	Paper Code	1	2982	-	7						
B.E. / B.Tech DEGREE EXAMINATIONS, NOV / DEC 2024 First Semester												
Civil Engineering												
(Common to all Branches)												
	20BSCY101 - ENGINEERING CHEMISTRY											
		Regulations -										
D	aration: 3 Hours	100800000	_0_0						Max	. Mar	ks: 1	00
2		A (MCQ) (20 ×	1 = 20 N	larks)							
		nswer ALL Que		iui Ko	,					Marks	Level	СО
1.	Which of the following internal treatme			r feed	wate	er?				1	K2	<i>CO1</i>
	(a) Phosphate conditioning (b) Co		•									
2.	(c) Zeolite conditioning (d) So What does "break point chlorin				tro	atma	nt i	ndi	nate?	1	K1	CO1
2.	(a) Maximum chlorine level before ha		nestie	water	ue	anne	III I	nun	cate :			
	(b) Point where chlorine fully disinfec											
	(c) Minimum chlorine level to kill bac	teria										
2	(d) Highest permissible chlorine level	of physical adap	mation?							1	K1	CO1
3.	Which of the following is an example (a) Hydrogen on palladium	(b) Water vap		ica gel	1					1	<u>I</u> II	001
	(c) Nitrogen on activated charcoal	• •		-								
4.	In catalysis, adsorbents are important l	•								1	K2	<i>CO1</i>
	(a) Absorb reactants completely		Provide l	-		tion	energ	зy				
5.	(c) Offer surface for reactants to adher When connecting two half-cells in a ve					42				1	K1	CO2
5.		b) To prevent ele			usev	u.						
	(c) To maintain charge balance (d	l) To increase ce	ell voltag	ge								
6.	Which type of cell requires an externa									1	K1	CO2
7	(a) Galvanic cell (b) Electrolytic cell (c) Voltaic cell (d) Concentration cell				1	K1	CO2					
/.	7. If two dissimilar metals are in contact in a wet environment, which type of corrosion can 1 K1 Co occur?						002					
		nic corrosion										
	(c) Uniform corrosion (d) Pitting										77.1	<i>c</i>
8.	Which of the following materials is type (a) Conner (b) Aluminum									1	KI	<i>CO2</i>
9.	(a) Copper (b) Aluminum Which process converts coal into synth	(c) Zinc hetic petrol?	(u) Stee	1					1	K1	CO3
	(a) Fischer-Tropsch synthesis (b) Be		c) Hydro	ocrack	ing	(d)	Gas	ifica	ation			
10.	What does the cetane number of a dies	sel fuel indicate?			C					1	K1	CO3
	(a) The fuel's energy content (b) The fuel's energy content (b) The fuel is a second s	•	· ·									
11	(c) The fuel's sulfur content (d) The fuel's sulfur content (d) The If a biofuel is produced from animal w	ne fuel's volatilit	•	vina is	it li	kəlv	to he			1	K1	CO3
11.	classified as?	asic, which of th		ving is	5 IL II	KCIY	10 00					
		(c) Gobar gas	(d)	Metha	nol							
12.	How can the efficiency of a combustic	on process be eva	aluated?							1	K1	СО3
	(a) By measuring fuel costs; (b) Through calorific value assessment	t and flue and an	alveier									
	(b) Through calorific value assessmen(c) By determining the color of the flat		a1y818;									
	(d) By checking the fuel source	- ,										

12982

			77.1	604		
13.	What is a key advantage of breeder reactors compared to conventional reactors?	1	KI	<i>CO</i> 4		
	(a) They produce less radioactive waste.(b) They generate more fissile material than they consume;					
(c) They are less expensive to build;						
	(d) They can operate without coolant.					
14.	Identify the primary disadvantage of solar energy conversion	1	K2	<i>CO</i> 4		
	(a) It is non-renewable (b) It depends on weather conditions.					
15	(c) It produces harmful emissions(d) It requires large land areas for installation.Which statement correctly describes a fuel cell?	1	K1	CO4		
15.	(a) It generates energy through combustion	1		001		
	(b) It converts chemical energy directly into electrical energy					
	(c) It stores energy for later use					
	(d) It is a type of rechargeable battery	1	1/1	604		
16.	What is the main component of a lead-acid battery?	1	KI	<i>CO</i> 4		
17	(a) Lithium (b) Lead dioxide and sulfuric acid (c) Nickel hydroxide (d) Carbon Which of the following angineering polymers is known for its high strength and thermal					
17.	17. Which of the following engineering polymers is known for its high strength and thermal stability?					
	(a) Teflon (b) Kevlar (c) Nylon-6 (d) PEEK					
18.	In a polymer matrix composite, what role does the matrix material play?	1	K1	<i>CO5</i>		
	(a) Provides reinforcement (b) Distributes loads and protects reinforcement					
10	(c) Increases thermal conductivity (d) Reduces flexibility	1	K2	CO5		
19.	Which property of nanomaterials significantly increases due to their small size?(a) Density(b) Surface area to volume ratio	1	K2	COS		
	(c) Thermal conductivity (d) Electrical conductivity					
20.	Which synthesis method is best suited for producing high-purity nanoparticles?	1	K2	<i>CO5</i>		
	(a) Mechanical milling (b) Precipitation (c) Laser ablation (d) Ball milling					
	PART - B $(10 \times 2 = 20 \text{ Marks})$					
21	Answer ALL Questions Calculate the hardness in ppm when 1 liter of water contains 100 mg of calcium carbonate.	2	K2	COI		
	What is Calgon conditioning? How is it functioning in water treatment?	2	K2	CO1		
	3. Define single electrode potential.					
	24. Zinc reacts with dilute H_2SO_4 to give hydrogen but silver does not. Why?					
(Given: $E^{\circ} Ag^+ / Ag = + 0.80V$ and $E^{\circ} Zn^{2+} / Zn = - 0.76V$)						
25.	Define knocking.	2	K1	CO3		
	What are the advantages of using liquefied petroleum gas (LPG)?	2	K2	CO3		
	What is a nuclear chain reaction?	2	K1	CO4		
	Define supercapacitor.	2	K1	CO4		
	List out the advantages of using Kevlar.	2	K2	CO5		
	How does the melting point of nanomaterials differ from that of bulk materials?	2	K2	CO5		
50.	now does the menting point of nanomaterials differ from that of ourk materials.					
	PART - C (6 × 10 = 60 Marks)					
	Answer ALL Questions					
31.	a) Discuss in detail the desalinating of brackish water by the reverse osmosis method.	10	K2	COI		
	OR					
	b) Illustrate the factors influencing the rate of adsorption of gases on solids.	10	K2	<i>CO1</i>		
32.	a) Derive the Nernst equation for a redox reaction and discuss their applications.	10	K2	<i>CO2</i>		
OR						

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 2

12982

	b) Discuss the principle and chemical reactions involved in electroless nickel plating and explain their advantages.				CO2		
33.	a)	Describe the Otto-Hoffmann method for the manufacture of metallurgical coke.	10	K2	CO3		
OR							
	b)	Demonstrate the flue gas analysis using the ORSAT method.	10	K2	СО3		
34.	a)	Analyze the construction and working principle of light water nuclear power plant.	10	K2	<i>CO</i> 4		
		OR					
	b)	Analyze the construction and working principle of a lithium-ion battery with a neat sketch.	10	К2	<i>CO4</i>		
35.	a)	Describe the free radical polymerization mechanism with suitable examples.	10	K2	CO5		
OR							
	b)	Discuss the CVD and Laser ablation techniques for the synthesis of nanoparticles.	10	K2	CO5		
36.	a) i)	Summarize the working principles of H_2 - O_2 fuel cells.	5	K2	<i>CO</i> 4		
	ii)	Discuss the preparation and properties of Nylon 6.6.	5	K2	CO5		
OR							
	b) i)	Explain the differences between nuclear fission and nuclear fusion reactions.	5	K2	<i>CO</i> 4		
	ii	Discuss in detail the properties of nanomaterials.	5	K2	<i>CO5</i>		