Reg. No.						
- 8						

Question Paper Code

12532

B.E. / **B.Tech - DEGREE EXAMINATIONS, NOV / DEC 2023**

First Semester

(Common to All Branches except Computer Science and Business Systems)

20BSMA101 - ENGINEERING MATHEMATICS - I

(Regulations 2020)

Duration: 3 Hours Max. Marks: 100

$PART - A (10 \times 2 = 20 Marks)$

Answer ALL Questions

1. Find the sum and product of all Eigen values of the matrix of $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$

2. Use Cayley Hamilton theorem to find A^3 given that $A = \begin{pmatrix} -1 & 3 \\ 2 & 4 \end{pmatrix}$.

3. Evaluate $\lim_{x\to 1} \left(\frac{x-1}{x^2-1}\right)$.

4. If u = x + y, y = uv, find the $\frac{\partial(x,y)}{\partial(u,v)}$.

5. Evaluate $\int \sqrt{1 + \sin 2x} \, dx$.

6. Evaluate $\int_{0}^{\frac{\pi}{2}} \sin^6 x \, dx$.

6. Evaluate $\int_{0}^{\frac{\pi}{2}} \sin^{6} x \, dx.$ 7. Evaluate: $\int_{0}^{\frac{\pi}{2}} \int_{0}^{\sin \theta} r dr d\theta.$

8. Evaluate $\int_0^1 \int_0^2 \int_1^2 x^2 y z dx dy dz$.

9. Define power series. 2,K2,CO5

10. Define the Half range cosine series in (0, 1).

PART - B $(5 \times 16 = 80 \text{ Marks})$

Answer ALL Questions

11. a) Reduce the quadratic form $6x^2 + 3y^2 + 3z^2 - 4xy - 2yz + 4xz$

into a canonical form by an orthogonal transformation. Hence find rank, index, signature and nature of the quadratic form.

OR

Verify Cayley-Hamilton theorem for the matrix = $\begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}$. Also find A^{-1} and A^4

2,K2,CO5

16,K2,CO1

12. a) A rectangular box open at the top is to have volume of 32cc. Find the 16,K3,CO2 dimension of the box that requires least material for its construction.

OR

- b) (i) Find the Taylor's series expansion of $e^x siny$ at $\left(-1, \frac{\pi}{4}\right)$ up to $\frac{8, K3, CO2}{2^{\text{nd}}}$ degree.
 - (ii) Find the absolute maximum and minimum values of $f(x) = 3x^4 4x^3 12x^2 + 1$, [-2,3].
- 13. a) Prove that the reduction formula for $I_n = \int \sin^n x \, dx$ is 16,K3,CO3 $I_n = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} I_{n-2}. \text{ Hence find } \int_0^{\frac{\pi}{2}} \sin^n x \, dx.$

OR

- b) (i) The arc of the cardioid: $r = a(1 + \cos \theta)$ included between $\theta = -\frac{\pi}{2}$ and $\theta = \frac{\pi}{2}$ is rotated about the line $\theta = \frac{\pi}{2}$. Find the volume of the solid of revolution.
 - (ii) Evaluate $\int \frac{x^3}{(x-1)(x-2)} dx.$ 8,K3,C03
- 14. a) Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$ using triple integrals. 16,K4,CO4
 - b) (i) Evaluate by changing the order of integration in $\int_0^1 \int_{x^2}^{2-x} xy dy dx$.
 - (ii) Find the area of a circle of radius a by double integration. 4,K4,CO4
- 15. a) Find the Fourier series for $f(x) = x^2$ in $-\pi \le x \le \pi$ and deduce that $\frac{16,K4,CO5}{\pi^2}$
 - (i) $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$
 - (ii) $\frac{1}{1^2} \frac{1}{2^2} + \frac{1}{3^2} \dots = \frac{\pi^2}{12}$
 - (iii) $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$

OR

b) Expand $f(x) = \pi x - x^2$, $0 < x < \pi$ as a Fourier cosine series and ^{16,K4,CO5} deduce hence find $\sum_{1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$.