
					Re	eg. No.									
	Question Paper Co					1	2533								
B.E. / B.Tech DEGREE EXAMINATIONS, NOV / DEC 2023 First Semester															
				puter Scier			•								
		2	OBSM	A102 - DIS			HEN	1 A1	I IC	S					
Dur	(Regulations 2020) Duration: 3 Hours Max. Max										Iark	ks· 100			
PART - A ($10 \times 2 = 20$ Marks)											5. 10	0			
Answer ALL Questions															
1.	1. Symbolize the following expressions " <i>x</i> is the father of the mother of y".									-	K-Lev	rks, v el,CO ,CO1			
2.	Show that the hypothesis " x works hard", "If x works hard then he is a dull boy" and "If x is a dull boy, then he will not get a job" imply the conclusion " x will not get a job".										2,K2	,CO1			
3.	Prove that if n is an integer and n is odd, then n^2 is odd.										2,K2	,CO2			
4.	Find the recurrence relation satisfying $y_n = (A + Bn)4^n$.										2,K1	,CO2			
5.	Prove that in a Boolean algebra, the complement of every element is 2,K2,C									,CO3					
6.	unique. 6. Simplify the Boolean expression $a \cdot c + c + [(b + b') + c]$.										2,K2	,CO3			
7.	State and prove the hand shaking theorem.											2,K2	,CO4		
8.	Define Hamiltonian graph and example.											2,K1	,CO4		
9. Define a partial ordering with an example.											2,K1	,CO5			
10. Let f be a homomorphism from (G , *) to (G , Δ). Then prove that $f(a^{-1}) = [f(a)]^{-1}$.									nat	2,K2	,CO5				
				PART - B Answe		= 80 M Question	,)							
11.	a)	(i) Prove the	implic	$\operatorname{cation}(p \lor a)$	$q) \wedge (p$	$\rightarrow r) \wedge$	$(q \rightarrow$	s)	⇒ ((s V 1	·).			8,K	3,CO1
		(ii) Verify the validity of the following argument: Every living thing is a plant or an animal. Rama's dog is alive and it is not a plant. All animals have hearts. Therefore, Rama's dog has a heart. OR											8,K	73,CO1	
	b)	(i) Prove using truth ta		$(\neg P \land (\neg $	-	∨ (<i>Q</i> ∧	R) V	(P	∧ R	?)⇔	R v	vith	out	8,K	73,CO1
(ii) Obtain the disjunctive normal form and hence find the conjunctive normal form of $(p \land \neg(q \land r)) \lor (p \rightarrow q)$.									8,K	73,CO1					

12.	a)	(i) Prove by using Mathematical induction $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$	8,K3,CO2				
		(ii) Use the method of generating function to solve the recurrence relation $a_{n+1} - 8a_n + 16a_{n-1} = 4^n$, $n \ge 1$, $a_0 = 1$ and $a_1 = 8$. OR	8,K3,CO2				
	b)	(i) Prove, by using Mathematical induction that					
		$n^{3} + (n + 1)^{3} + (n + 2)^{3}$ is divisible by 9 for $n \ge 1$.	8.K3.CO2				
		(ii) Solve the recurrence relation $a_n - 2a_{n-1} = 2n^2$, $n \ge 1$ given					
		that $a_1 = 4$.					
13.	a)	(i) In any Boolean algebra, Show that	4,K3,CO3				
		(a + b')(b + c')(c + a') = (a' + b)(b' + c)(c' + a).					
		(ii) Simplify the Boolean expression	4,K3,CO3				
		a'.b'.c + a.b'.c + a'.b'.c' using Boolean identities.					
		(iii) Find the CNF of $f(x, y, z) = xz + x'y + yz$ by	8,K3,CO3				
		a) Truth table					
		b) Algebraic method.					
	b)	(i) State and prove De Morgen's laws in Peoleen algebra					
	b)	(i) State and prove De Morgan's laws in Boolean algebra.					
		(ii) Minimize the function $f(a, b, c, d) = \Sigma(0, 1, 2, 3, 4, 6, 7, 8, 9, 11, 15)$	8,K3,CO3				

14. a) (i) Explain Isomorphism. Test whether the graphs G1 and G2 are ^{8,K3,CO4} isomorphic.

using Karnaugh map method.

(ii) Prove that a tree with n vertices has n - 1 edges.

b) Prove that a connected graph G is Eulerian if and only if its vertices are ^{16,K3,CO4} of even degree.

8,K3,CO4

15. a) (i) If R is a relation defined on Z such that a Rb iff a² - b² is divisible ^{8,K3,CO5} by 3, show that R is an equivalence relation.
(ii) Show that the intersection of any two subgroup of a group G is also a ^{8,K3,CO5} subgroup of G.

OR

b) State and prove Lagrange's theorem. *16,K3,C05*

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12533

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12533