			Reg. No.				\top			٦
		Question Paper C		12983						
	B.E. / B.	Fech DEGREE B		,	NOV / D	EC 202	24			
		F11 Computer Science	rst Semeste		toms					
	20BSMA103 - INTRODUC	•		•		LITY	AND	CALCU	LUS	
			lations - 20					0111100	200	
		(Use of Statist	tical table i	s permitte	d)					
	Duration: 3 Hours						Ma	ax. Marks	: 100	
]	PART - A (MCQ) (Answer AL	`					Mar	rks K- Level	, co
1.	An function is c				ndent vai	riable.		1	K1	CO1
	(a) Explicit (b) Impli	cit (c) Onto	(d) (One-to-On	e			1	K I	CO1
۷.	If $f(-x) = f(x)$ for every elem (a) Odd function (b) Com						etion	-	K1	001
3.					(4) 111		, tron	1	K2	<i>CO1</i>
	The domain of the function f									
	$(a)(-\infty,0)\cup(0,\infty) \qquad (b)$	b) $(-\infty, 0)$ (c)	$(0,\infty)$	(d) (-	$\infty, 0) \cap ($	(∞,∞)		1	V1	CO1
4.	If f(x) changes from positive (a) constant (b) minimum	to negative then I(x n (c) zero	(d) mas a (d) ma	aximum	value			1	ΛI	COI
5.	Integration is the	process of different	entiation.					1	K1	<i>CO2</i>
6.	(a) same (b) parallel $\int f(x) dx$ is called as	(c) different	(d) 1	nverse				1	K1	<i>CO2</i>
0.	$\int f(x)dx \text{ is called as}$ (a) function of integral (b)		(c) functi	on $(d) d$	efinite in	teoral				
7.			(c) function			liegiui		1	K2	<i>CO2</i>
	The value of $\int_{0}^{\frac{\pi}{2}} \sin^{6}x dx = \frac{1}{2}$ (a) $\frac{5\pi}{32}$ (b) $\frac{3\pi}{16}$	(d)) 0							
8.	The formula for integration b) 0					1	K1	<i>CO2</i>
	(a) $\int f(x)g'(x)dx = f(x)g(x)$	• 1								
	(b) $\int f(x)g'(x)dx = f(x) - \int f(x) dx = f(x) - \int f(x) dx$	g(x)f'(x)dx								
	(c) $\int f(x)g'(x)dx = \int g(x)f'(x)dx = \int g(x)f(x)dx = \int g(x)f$	(x)dx								
	(d) $\int f(x)g'(x)dx = f(x)g(x)$									
9.	If a fair coin is tossed, what i		getting hea	ıds?				1	K1	CO3
10		c) 1 (d) $1/3$	a a numb a	nlagg than	49			1	K?	CO3
10.	If a die is rolled, what is the (a) 0.5 (b) 0.6		0.11	r less than	4:			1	K2	005
11.	What is the formula for Baye	s' Theorem?						1	K1	СОЗ
	(a) $P(A B) = \frac{P(B A).P(A)}{P(B)}$	(b) $P(A B) =$	$=\frac{P(A \mid B).F}{P(A)}$	$\mathcal{P}(B)$						
	(c) $P(B) = \frac{P(A).P(B)}{P(B \mid A)}$	(d) $P(A) = \frac{P(A)}{P(A)}$	$\overline{P(A \mid B)}$							
12.	What is the sample space for			1) NI	· 4 h a - 1			1	K1	СО3
13.	(a) Heads (b) Tails What are the parameters of a	(c) Heads, Tai binomial distributio	,	l) None of	the abov	/e		1	K1	<i>CO</i> 4
	(a) p and q (b) n and			λ						

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 1 *12983*

14. How is the variance of a discrete random variable calculated?	1	K1 CO4				
(a) $Var(X) = E(X^2) - [E(X)]^2$ (b) $Var(X) = E(X^2)$						
(c) $Var(X) = [E(X)]^2$ (d) $Var(X) = E(X)^2 - [E(X^2)]$						
15. In a Poisson distribution, what does the parameter λ represent?	1	K1 CO4				
(a) variance (b) mean (c) Both mean and the variance (d) constant		K1 604				
16. The Curve of the normal distribution is	1	K1 CO4				
(a) Bell shaped (b) Flat (c) Triangle (d) Square17. What do you know by the term "population" in statistics?	1	K1 CO5				
(a) group of individuals (b) to the single person						
(c) mean of the group (d) entire group of individuals						
18. The first hand and unorganized form of data is	1	K1 CO5				
(a) Primary data (b) Secondary data (c) Organized data (d) None of these 19 As one variable increases the other also increases is correlation	1	K1 CO5				
19. As one variable increases, the other also increases is correlation. (a) negative (b) positive (c) multi d) bilinear						
20. Conditional frequency distributions are useful in	1	K1 CO5				
(a) Education (b) Marketing (c) Public health d) All the above						
PART - B $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions						
21. Find the critical points of the function $f(x) = 5x^3 - 6x$.	2	K2 CO1				
22. Discuss the continuity of the function $f(x) = x $.	2	K2 CO1				
2 <i>y x</i>	2	K2 CO2				
23. Evaluate $\iint_{0} \iint_{0} \frac{dxdydz}{dx}$.						
24. Find $\int e^{\cos x} \sin x dx$.	2	K2 CO2				
25. What is conditional probability?	2	K1 CO3				
26. If a random variable X takes the values 1, 2, 3, 4, such that	2	K2 CO3				
2P(X = 1) = 3P(X = 2) = P(X = 3) = 5P(X = 4). Find the probability distribution of X.	2	K2 604				
27. If X is a normal random variable with mean 3 and variance 9, find the probability that X in between 2 and 5.	2	K2 CO4				
28. State any two properties of Normal distribution.	2	K2 CO4				
29. What are the measures of central tendency?	2	K1 CO5				
30. Draw a frequency curve for the following distribution:						
Age (Yrs.) 17-19 19-21 21-23 23-25 25-27 27-29 29-31						
No. of Students 7 13 24 30 22 15 6						
PART - C (6 \times 10 = 60 Marks) Answer ALL Questions						
(21 a) $(22 a)$	10	K3 CO1				
$(\frac{x^{-4}}{x-2}, x < 2)$						

51. u)

If $f(x) = \begin{cases} \frac{x-x}{x-2}, & x < 2\\ ax^2 - bx + 3, & 2 \le x < 3\\ 2x - a + b, & x \ge 3 \end{cases}$ is continuous for all real x, find the values of a

and b.

OR

b) For the function $f(x) = 2 + 2x^2 - x^4$ find the intervals of increase or decrease, local maxima ¹⁰ K3 CO1 and minima values, intervals of concavity and inflection points

32. a) Evaluate
$$\iiint_{v} \frac{dzdydx}{(x+y+z+1)^3}$$
 over the region of integration bounded by the planes
 $x = 0, y = 0, z = 0, x+y+z = 1.$

12983

35. a) Calculate the Quartile deviation, Mean deviation and their co-efficient.

Monthly Income (in Rs.)	Below 75	75-150	150-225	225-300	300-375	375-450	450 and over
No. of families	60	170	200	60	50	40	20

Draw a less than o give curve for the above data on the same graph and from these read the median income.

3

Find the area of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ using double integration. b)

33. a) A random variable has the following probability distribution.

X -2 -1 0 1 2 3 P(X) 0.1 K 0.2 2k 0.3 3k								
P (X) 0.1 K 0.2 2k 0.3 3k	X	-2	-1	0	1	2	3	
	P (X)	0.1	Κ	0.2	2k	0.3	3k	

Find (i) the value of k (ii) Evaluate P(-2 < X < 3) (iii) The cumulative distribution of X (iv) the mean of X (v) the variance of X.

OR

- b) In a bolt factory machines A, B, and C produce 25%, 35%, 40% of the total output 10 K3 CO3 respectively. Of their outputs 5%, 4%, 2% are defective bolts. If a bolt is chosen at random from the combined output, what is the probability that it is defective? If a bolt chosen at random is defective, what is the probability that was produced by B?
- 34. a) Messages arrive at a switch board in a Poisson manner at an average rate of six per hour. 10 K3 CO4 Find the probability for each of the following events (i) Exactly two messages arrive within one-hour (ii) no message arrive within one hour (iii) at least three messages arrive within one hour.

OR

b) The life of a certain kind of electronic device has a mean of 300 hours and standard 10 K3 CO4 deviation of 25 hours. Assuming that the life times of the devices follow normal distribution. (i) Find the probability that any of these devices will have a life time more than 350 hours. (ii) What percentage will have life time between 220 and 260 hours?

10 K3 CO2

10 K3 CO3

10 K3 CO5