	J	Reg. No.											
	Question Paper Cod	e 1	25	37									
B.E. / B. T	ech DEGREE EXA	MINATI	ON	S,	NC)V	/ D	E(C 2	023	3		

Second Semester

Civil Engineering

(Common to Electronics and Communication Engineering, Electrical and Electronics Engineering, Electronics and Instrumentation Engineering, Instrumentation and Control Engineering, Mechanical Engineering, Mechanical and Automation Engineering &

Computer and Communication Engineering)

20BSMA201 - ENGINEERING MATHEMATICS - II

(Regulations 2020)

Duration: 3 Hours

Max. Marks: 100

PART-A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions

1.	If $\varphi = 3xy - yz$, Find grad φ at $(1, 1, 1)$.	Marks, K-Level, CO 2,K2,CO1
2.	State Greens theorem.	2,K1,CO1
3.	Solve $(D^2 + 1)y = e^{-x}$	2,K2,CO2
4.	Solve $(x^2D^2 + xD)y = 0$.	2,K2,CO2
5.	Estimate the invariant points of the transformation $w = \frac{z-1}{z+1}$	2,K2,CO3
6.	Show that $u = 2x - x^3 + 3xy^2$ is harmonic.	2,K2,CO3
7.	State Cauchy's integral theorem.	2,K1,CO4
8.	Define an isolated singularity and give an example.	2,K2,CO4
9.	Find Laplace transform of e ^{-3t} .	2,K2,CO5
10.	State Convolution Theorem in Laplace Transform.	2,K1,CO5

PART - B $(5 \times 16 = 80 \text{ Marks})$

		Answer ALL Questions	
11.	a)	(i) Find the angle between the surfaces $x^2 - y^2 - z^2 = 11$ and	8,K3,CO1
		xy + yz - zx = 18 at the point (6, 4, 3).	
		(ii) Find the scalar potential, if the vector field.	8,K3,CO1
		$\overrightarrow{F} = (x^2 + xy^2) \overrightarrow{i} + (y^2 + x^2y) \overrightarrow{j}$ is irrotational.	
		OR	
	b)	Verify Gauss Divergence theorem for	16,K3,CO1
		$\vec{F} = (x^2 - yz)\vec{i} + (y^2 - zx)\vec{j} + (z^2 - xy)\vec{k}$ taken over the	
		rectangular parallelepiped bounded by $x = 0$, $y = 0$, $z = 0$ and	

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12537 x = a, y = b, z = c.

12. a) Solve
$$(D^2 + a^2)y = tanax$$
 by the method of variation of parameters.
OR
b) Solve $[(x + 1)^2D^2 + (x + 1)D + 1]y = 4 \cos[log(x + 1)]$.
13. a) (i) Determine the analytic function whose real part is $\frac{\sin 2x}{\cosh 2y - \cos 2x}$
(ii) If $f(z)$ is an analytic function of z, then prove that
 $\nabla^2 \log |f(z)| = 0$.
OR
b) Find the bilinear transformation which maps $z = 1, 0, -1$ into
 $w = 0, -1, \infty$ respectively. What are the invariant points of the
transformation?
14. a) Evaluate $\int_0^{2\pi} \frac{d\theta}{(a+bsin\theta)} (a > 0, b > 0)$, using contour integration.
b) Expand as Laurent's series of the function $\frac{z}{(z^2-3z+2)}$ in the regions
(i) $|z| < 1$ (ii) $1 < |z| < 2$ (iii) $|z| > 3$.
15. a) Find the Laplace transform of the square- wave function of period 2 $\frac{16,K3,CO3}{16,K3,CO5}$
defined as $f(t) = \begin{cases} 1, when 0 < t < 1\\ 0, when 1 < t < 2 \end{cases}$ and $f(t+2) = f(t)$), for all t.
OR

b) Solve the difference equation $\frac{d^2y}{dt^2} - 3\frac{dy}{dt} + 2y = e^{-t}$ with y(0) = 1 ^{16,K3,CO5} and y'(0) = 0, using Laplace transform.