Question Paper Code

13325

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2024

Second Semester

Civil Engineering

(Common to Electronics and Communication Engineering, Electrical and Electronics Engineering, Electrical and Instrumentation Engineering, Instrumentation and Control Engineering, Mechanical Engineering & Mechanical and Automation Engineering)

20BSMA201 - ENGINEERING MATHEMATICS - II

	Regulations - 2020			
Du	ration: 3 Hours	Max. Marks: 100		
	PART - A (MCQ) $(20 \times 1 = 20 \text{ Marks})$ Answer ALL Questions	Marks	K – Level	со
1.	The directional derivative of $\Phi = xyz$ at (1,1,1) in the direction of $\vec{i} + \vec{j} + \vec{k}$ is	1	K2	CO1
	(a) $\sqrt{3}$ (b) 3 (c) 1 (d) $\sqrt{5}$			
2.	The vector field \vec{F} is irrotational,	1	<i>K1</i>	CO1
3.	(a) $\nabla \cdot \vec{F} = \vec{0}$ (b) $\nabla \times \vec{F} = \vec{0}$ (c) $\nabla \cdot \vec{F} = 0$ (d) $\nabla \times \vec{F} = 0$ If C is constant, then grad $C = 0$	1	K2	CO1
	(a) 0 (b) 2 (c) 1 (d) $\frac{c^2}{2}$			
4.	If <i>S</i> is an open surface bounded by a simple closed <i>C</i> and if \vec{F} is continuous functions with continuous partial derivatives in <i>S</i> , then (a) $\oint_C \vec{F} \cdot \vec{dr} = \iint_S div \vec{F} \cdot \vec{n} dS$ (b) $\oint_C \vec{F} \cdot \vec{dr} = \iint_S curl \vec{F} \cdot \vec{n} dS$	n ^I	KI	CO1
5.	(c) $\oint_C \vec{F} \cdot d\vec{r} = \iiint_S div \vec{F} \cdot \vec{n} dS$ (d) $\oint_C \vec{F} \cdot d\vec{r} = \iiint_S curl \vec{F} \cdot \vec{n} dS$ What is the complete solution of $(D^2 + 3D + 2)y = 0$?	1	K2	CO2
6	(a) $y(x) = c_1 e^{-x} + c_2 e^{-2x}$ (b) $y(x) = c_1 e^x + c_2 e^{2x}$ (c) $y(x) = c_1 e^{-x} + x c_2 e^{2x}$ (d) $y(x) = c_1 e^{-x} + c_2 e^{2x}$ The particular integral of differential equation $(D-1)^2 y = e^x \sin x$ is	1	<i>K</i> 2	CO2
0.	The particular integral of differential equation $(D-1)^{-1}y = e^{-stit}x$ is (a) $e^{st}tany$ (b) $-e^{st}cosy$ (c) $-e^{st}siny$ (d) None of these			002
7.	(a) $e^x tanx$ (b) $-e^x cosx$ (c) $-e^x sinx$ (d) None of these If the complementary function of $y'' + y = tan x$ is $y(x) = c_1 y_1 + c_2 y_2$, then the Wronskian of $y_1(x) \& y_2(x)$ is	e 1	K2	CO2
	(a) 4 (b) 3 (c) 2 (d) 1			
8.	1	1	K1	CO2
9.	(a) Complex conjugates (b) Real and distinct (c) Real and equal (d) None of the above A function <i>u</i> is said to be harmonic if and only if	1	K1	СОЗ
10.	(a) $u_x + u_y = 0$ (b) $u_{xx} + u_{yy} = 0$ (c) $u_{xx} - u_{yy} = 0$ (d) $u_{xy} + u_{yx} = 0$ If v is a harmonic conjugate of u in some domain D, then which one of the following is	, <i>1</i>	K1	СОЗ
11	incorrect $(a) f(z) = u + iv \text{ is analytic in domain D} $ (b) u is a harmonic conjugate of v (c) u and v both are harmonic (d) u and v both satisfy C-R Equations Naccessery and sufficient condition for $v = f(z)$ to be analytic in the region $P(z)$	1	<i>K1</i>	CO3
11.	(a) $u_x = v_y, u_y = -v_x$ (b) $u_x = -v_y, u_y = -v_x$	1	KI	COS
12.	(c) $u_x = v_y$, $u_y = v_x$ (d) $u_{xx} = v_y$, $u_{yy} = -v_x$ The transformation $w = \frac{az+b}{cz+d}$ where a,b,c,d are complex numbers is bilinear transformation if	r ¹	K1	СОЗ
	(a) $ad = bc$ (b) $ac + bd = 0$ (c) $ad - bc \neq 0$ (d) $a + b = c + d$			

13.	The poles of $f(z) = \frac{z^2+1}{1-z^2}$ is			1	K2	CO4
	(a)1 (b) -1	(c) ± 1	(d) 0			
14.	If f is analytic in a simply connected doma	nin D, then for ever	y closed contour C lying in	1	K2	CO4
	$D, \int_{C} f(z)dz = $	(a) 1	(4) 2-:			
15.	(a) 1 (b) 0 The Singularity of $f(z) = z+3$ are	(c) -1	(d) $2\pi i$	1	<i>K</i> 2	CO4
10.	The Singularity of $f(z) = \frac{z+3}{(z-1)(z-2)}$ are	() 12	(1) 2.2			
16	(a) 1,3 (b) 1,0 If C is a value of $\frac{dz}{dz}$	(c) 1,2	(d) 2,3	1	K2	CO4
10.	If C is unit circle, then $\int_C \frac{dz}{z} =$	(a) 1-i	(A) (A)			
17.	(a) 1 (b) $2\pi i$ Laplace transform of $f(t)$ is given by	(c) 4π <i>i</i>	(d) 0	1	K1	CO5
	(a) $F(s) = \int_0^\infty e^{-st} f(t) dt$	(b) $f(t) = \int_0^\infty e^{-st} F(s) ds$				
	(c) $F(s) = \int_0^\infty e^{st} f(t) dt$	(d) None of these.				
18.	L[K] =			1	K1	CO5
	(a) $\frac{K}{S}$ (b) K	(c) S	(d) None of these.			
19.	$L^{-1}\left[\frac{1}{s-a}\right] =$			1	K1	CO5
	$\begin{bmatrix} s - a \end{bmatrix}^{-1}$ (a) e^{at} (b) t^a	(c) a^t	(d) None of these.			
20	Laplace Transforms of $\delta(t-a)$ is	(c) u	(u) None of these.	1	K1	CO5
20.	(a) $e^{\delta s}$ (b) e^{as}	(c) e^{-as}	(d) $e^{\delta t}$			
	D. D. D. (40)					
	•	$0 \times 2 = 20 \text{ Marks}$) LL Questions				
21.	Prove that $\overrightarrow{F} = yz \overrightarrow{i} + zx \overrightarrow{j} + xy \overrightarrow{k}$ is irrot			2	K2	CO1
	State Gauss divergence theorem.					CO1
	$Solve(D^2 + 1)y = e^{-x}.$					CO2
24.	Transform $(x+2)^2 \frac{d^2y}{dx^2} - (x+2) \frac{dy}{dx} + y$	=3x+v in to	differential equation with	2	K2	CO2
	constant coefficients. dx^2	,	1			
25.	Check whether $w = \bar{z}$ is analytic everywhere.					CO3
26.	Find the invariant points of the bilinear transformation $w = \frac{1+z}{1-z}$.					CO3
	Expand $\frac{1}{z-2}$ at $z=1$ in Taylor's series.					CO4
28.	Discuss the nature of the singularity of the f	$\frac{1}{e^{\overline{Z}}}$		2	K2	CO4
		function $\frac{1}{(z-a)^2}$.		2	K1	a
	State and prove First Shifting property.					CO5
30.	Verify the Initial value theorem for the func	$extion f(t) = ae^{-bt}.$		2	K2	CO5
	PART - C	$(6 \times 10 = 60 \text{ Mark})$	s)			
	Answe	er ALL Questions				
31.	a) Show that $\overrightarrow{F} = (6xy + z^3) \overrightarrow{i} + (3x^2)$	$(3xz^2 - z)\vec{j} + (3xz^2 - z)\vec{j}$	y) \vec{k} is irrotational vector	10	<i>K3</i>	CO1
	and find the scalar potential ϕ such	that $\overrightarrow{F} = \nabla \phi$.				
OR						
	b) Verify Gauss Divergence theorem fo	or $\overrightarrow{F} = 4xz \vec{\imath} - y^2 \vec{\jmath}$	$+yz\vec{k}$ over the cube	10	<i>K3</i>	CO1
	Bounded by $x = 0, x = 1, y = 0, y$					
32.	a) Solve $(D^2 + 5D + 4)y = 4e^{-x} + x$.			10	KЗ	CO2
5∠.	a) Solve $(D^2 + 5D + 4)y = 4e^{-x} + x$.	OR				- 0 -

- b) Solve $(D^2 + 4)y = \sec 2x$ by the method of variation of parameters.
- 10 K3 CO2

33. a) Determine the analytic function whose real part is $\frac{\sin 2x}{\cosh 2y - \cos 2x}$.

10 K3 CO3

OR

- b) Find the bilinear transformation that maps the points $z = 0, 1, \infty$ of the z-plane into ¹⁰ ^{K3} ^{CO3} the points w = -5, -1, 3 of the w-plane.
- 34. a) Expand $\frac{1}{z^2 3z + 2}$ in the region (i) 1 < |z| < 2 (ii) |z 1| < 1 and (iii) |z| > 2.
 - b) Evaluate $\int_0^{2\pi} \frac{d\theta}{13+5\sin\theta}$ by using contour integration.
- 35. a) Find the Laplace transform of the periodic function $f(t) = \begin{cases} t & 0 \le t \le a \\ 2a t, & a < t \le 2a \end{cases} \text{ and } f(t + 2a) = f(t).$

OR

- b) Using Laplace transform, solve $(D^2 3D + 2)y = e^{-3t}$ given y(0) = 1 and y'(0) = -1.
- 36. a) i) Evaluate $\int_C \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$, Where C: |z| = 3 by using Cauchy's integral formula.
 - ii) Find $L[te^{-t}\sin t]$.

OR

- b) i) Discuss the nature of the singularity of the function $\frac{\sin z z}{z^3}$.
 - ii) Find $L\left[\frac{1-e^t}{t}\right]$.