	Reg. No.	•									
	Question Paper Code	13326									
		FION					0.2.4				
	B.E. / B.Tech DEGREE EXAMINAT	TION	NS, N	0	/ / DI	EC 2	024				
	Second Semeste	er									
	Computer Science and Busi	ness	Syst	em	5						
	20BSMA202 - LINEAR A	LGF	EBR	A							
	Regulations - 202	20									
D	Puration: 3 Hours							Ma	x. Ma	rks: 1	00
	PART - A (MCO) ($20 \times 1 = 20$ M)	Mark	(s)							<i>K</i> –	
	Answer ALL Questions								Mark	^s Level	со
1.	Find the value of k for which $\begin{pmatrix} k & 8 \end{pmatrix}$ is a singular matrix	v							1	K2	<i>CO1</i>
	The the value of k, for which $\begin{pmatrix} 4 & 2k \end{pmatrix}$ is a singular matrix	Λ				2					
2	(a) 4 (b) -4 (c) ± 4				(d))			1	V٦	C01
2.	What is the value of the determinant $\begin{bmatrix} p & p+1 \\ n & 1 \end{bmatrix}$								1	K2	001
	(a) 2 (b) 1 $p - 1 - p - 1$ (c) 0				(d) 3						
3	When is the Cramer's rule applicable for a system m linear	r eau	ation	s at	nd n v	ariał	oles		1	<i>K1</i>	C01
5.	(a) $m = n$. co-efficient matrix is non-singular	(b)	m ≠	n o	nlv	uriu	105				
	(c) m \neq n and coefficient matrix is singular	(d)	m =	n	only						
4.	For what values of α and β , the system of equation $4x + \frac{1}{2}$	y =	α and	d ß	x + 2	2y =	3 ł	nas no	o 1	K1	C01
	solution	-				-					
	(a) $\alpha \neq \frac{3}{2}$ & $\beta = 8$ (b) $\alpha = 1$ & $\beta = 8$ (c) $\alpha = 1$ & β	3 = 3		(d)	$\alpha = 8$	3&6	$3 \neq \frac{3}{2}$				
5.	If A is the Co-efficient matrix. K is the augmented matrix	and	R is	the	rank	of th	e n	natrix	. 1	K1	<i>CO2</i>
	then								,		
	(a) If $R(A) \neq R(K)$, the equations are inconsistent and have	e no s	oluti	on							
	(b) If $R(A) = R(K) = n$, the equations are consistent and ha	ve ur	nique	so	lution						
	(c) If $R(A) = R(K) < n$, the equations are consistent and ha	ve in	finite	e so	olutio	ns					
-	(d) If $R(A) = R(K) > n$, the equations are consistent and ha	and have infinite solutions					1	77.1	<i>a</i> .		
6.	A system of equations is said to be inconsistent if	1			1				1	K1	02
	(a) they have one solution (b) the	(b) they have no solutions									
7	(c) they have one of more solutions (d) iteration $11 - a - b + c$			se					1	K2	CO2
7.	The value of the determinant $\begin{bmatrix} 1 & a & b + c \\ 1 & b & c + a \end{bmatrix}$								-		
	$\begin{vmatrix} 1 & c \\ c & a + b \end{vmatrix}$										
	(a) 2 (b) 0 (c) 3		(d)	a	+ b +	с					
8.	Gauss elimination method is used to find								1	K1	CO2
	(a) Rank of the matrix (b) Det	termi	nant	of t	he m	atrix					
0	(c) Inverse of the invertible matrix (d) All	of th	e abo	ove					1	VI	coz
9.	The additive identity is	(d)		- f 41	. .				1	K1	005
10	(a) I (b) U (c)-I Intersection of two subspaces of a vector space $V(E)$ is a su	(a) n	one (DI U f Va	(\mathbf{E})	ove			1	K1	C03
10.	(a) True (b) False (c) Partially true	uospa	(d) r		(r) e of tl	ie ah	ove		1	m	005
11.	The range of the linear transformation T is also called as		(u) I	IOII	01 11		0.00	, ,	1	<i>K1</i>	CO3
	(a) Kernel (b) Image (c) Null sp	ace	(ď) nc	one of	the	abo	ve			
12.	The matrix Q in QR decomposition is		(,		-			1	K1	CO3
	(a) Upper triangular matrix (b) Lowe	er tria	angu	lar	matri	ĸ					
	(c) Orthonormal matrix (d) None	e of the	he at	ovo	e						
13.	A map T:V \rightarrow W defined by T(v)=0 for every v $\in V$ is calle	d as							1	K1	<i>CO</i> 4
	(a) Identity transformation (b) zero transformation (c) Is	omoi	rphic	(d)	none	of t	he a	bove			

14.	Product of the eigen values of a square matrix A is equal to (a) Trace of the matrix $(b) A $ (b) $ A $ (c) $ A^T $ (d) None of the above	1	Kl	<i>CO</i> 4					
15.	The positive definite matrix is	1	K1	<i>CO4</i>					
	(a) Symmetric (b) Skew-symmetric (c) Both (d) None of the above								
16.	Dimension theorem states that	1	K1	<i>CO4</i>					
	(a) $\operatorname{Rank}(T) - \operatorname{nullity}(T) = \operatorname{dim} V$ (b) $\operatorname{Rank}(T) + \operatorname{nullity}(T) = \operatorname{dim} W$ (c) $\operatorname{Rank}(T) + \operatorname{nullity}(T) = \operatorname{dim} V$ (d) None of the above								
17.	Which of the following techniques would perform better for reducing dimension?								
	(a) Removing columns which have too many missing values								
	(b) Removing columns which have high variance in data								
	(c) Removing columns with dissimilar data trends (d) None of these								
18.	In SVD of a matrix A, the eigenvalues are calculated for	1	K1	C05					
	(a) A matrix (b) $\vec{A^T}$ matrix (c) $A\vec{A^T}$ matrix (d) None of the above								
19.	9. The mathematical technique used in image processing is								
	(a) Probability and Statistics (b) Difference equation (c) Fourier transforms (d) All of the above								
20.	Singular Value decomposition in machine learning is a versatile tool for	1	K1	CO5					
	(a) dimensionality reduction (b) data compression								
	(c) feature extraction (d) All of the above								
	PART - B (10 × 2 - 20 Marks)								
$ \begin{array}{c} \mathbf{FAK1} - \mathbf{D} \ (10 \times 2 = 20 \ \text{Marks}) \\ \text{Answer ALL Ouestions} \end{array} $									
21.	$\begin{vmatrix} x+2 & 2x+3 & 3x+4 \end{vmatrix}$	2	K2	<i>CO1</i>					
	Without expanding the determinant, prove that $\begin{vmatrix} 2x+3 & 3x+4 & 4x+5 \end{vmatrix} = 0.$								
22.	Find the inverse of the matrix $\begin{pmatrix} -3 & 2 \end{pmatrix}$	2	K2	C01					
22	Write the condition for infinite colutions for the system of linear equations								
25. 24	. Write the condition for minime solutions for the system of mear equations. In \mathbb{R}^3 even \mathbb{R} test whether (2, 5.4) is a linear combination of the vectors (1, 2.2) and								
24.	In R over R , lest whether (2,-3,4) is a linear combination of the vectors (1,-3,2) and (2,-1,1).	2	112	002					
25.	. State and prove Cancellation law of addition.								
26.	Write the basis for the set of all matrices $M2 \times 2$ (R).			СО3					
27.	Define Range and Null space.								
28.	. Test whether the map T: $R^3 \rightarrow R^3$ defined by $T(x, y, z) = (x, 0, 0)$ for								
20	every $(x, y, z) \in R$ is a linear. What is the advantage of mark in machine learning problems?	2	K I	<i>CO</i> 5					
29. 20	Write the formula for sample principal component	2	K1	C05					
50.	whethe formula for sample principal component.	-		005					
	PART - C ($6 \times 10 = 60$ Marks)								
	Answer ALL Questions								
31.	a) Solve by matrix method, the system of equations $x + y + z = 1$,	10	K3	COI					
	3x + y - 3z = 5, x - 2y - 5z = 0.								
	b) $ a-b-c = 2b + 2c + 1$	10	K3	CO1					
	Show that $\begin{vmatrix} a & b & c & 2b & 2c \\ 2a & b - c - a & 2c & =(a + b + c)^3. \end{vmatrix}$								
	$\begin{vmatrix} 2a & 2b & c-a-b \end{vmatrix}$								
20		10	K3	CO^{2}					
32.	a) Show that the equations $5x + 3y + 7z = 4$, $3x + 26y + 2z = 9$,	10	ЛJ	002					

7x + 2y + 10z = 5 are consistent and solve them by rank method.

OR

- b) Solve the following system of equations by triangularization: 4x + 5y + 2 = 4; ¹⁰ K³ CO2 2x 4y 2z = -4; -5x + 3y 3z = -23.
- 33. a) Test whether the polynomial $2x^3 x^2 + x + 3$ is in the linear span of $S = \{x^3 + x^2 + x + 1, x^2 + x + 1, x + 1\}.$
 - b) Let V be an inner product space and $S = \{v_1, v_2, ..., v_n\}$ be an orthogonal subset of ¹⁰ K³ CO³ V consisting of non-zero vectors. If $v \in L(S)$, then prove that $V = \sum_{i=1}^{n} \frac{\langle v, v_i \rangle}{||v_i|^2||} v_i$.
- 34. a) Find the matrix of T in the standard basis for the transformation $T: P_2(R) \to P_2(R) \stackrel{10}{\longrightarrow} K^3 \stackrel{CO4}{\longrightarrow} K^3 \stackrel{CO4}{$

OR

- b) Find the linear transformation by the matrix $\begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4 \end{pmatrix}$ with respect to the standard bases, what is T(-2, 2, 3)?
- 35. a) Determine the population principal components Y_1 and Y_2 for the covariance matrix $10 \quad K3 \quad CO5$ $A = \begin{pmatrix} 5 & 2 \\ 2 & 2 \end{pmatrix}$. Also calculate the proportion of the total population variance explained by first principal component.

OR

- b) Suppose A₀ has these two measurements of 5 samples. $A_0 = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix}$ ¹⁰ K³ CO5 Compute the centred matrix A, sample covariance S, eigen values λ_1, λ_2 . what is the line through the origin is closest to the 5 sample in the column of A.
- 36. a) i) Verify whether $V = \{(a_1, a_2) : a_1, a_2 \in R\}$ under component wise addition and 5 K3 CO3 scalar multiplication given by $\alpha(a_1, a_2) = (a_1, 0)$ is a vector space or not.
 - ii) Let $T: P_2(R) \rightarrow P_2(R)$ defined by T[f(x)] = f(x) + (x+1)f'(x) and $B = \{1, x, x^2\}$ be an ordered basis of $P_2(R)$ with $A = [T]_B$. 1. Find the matrix A. OR
 - b) i) Determine whether the set $S = \{(1, 2, 3), (4, 1, 5), (-4, 6, 2)\}$ of vectors in $R^3(R)$ is ⁵ K³ CO³ linearly dependent or independent.
 - ii) Let T: V \rightarrow W be a linear transformation. Then T is one to one if N (T) = {0}. 5 K3 CO4