	Reg. N	lo.											
Question Paper Co	Question Paper Code				13327								

Max. Marks: 100

13327

B.E. / B.Tech. / M.Tech - DEGREE EXAMINATIONS, NOV / DEC 2024

Second Semester

Computer Science and Engineering

(Common to Information Technology, Computer Science and Engineering (AIML) Computer Science and Engineering (IOT), Artificial Intelligence and Data Science & M.Tech. - Computer Science and Engineering (5 years Integrated))

20BSMA204 - DISCRETE STRUCTURES

Regulations - 2020

Duration: 3 Hours

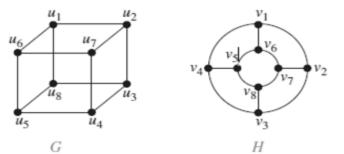
K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

14.	14. A non empty subset H of group G is a subgroup of G if:									
	(a) An identity element is $a \in H$.									
(b) The operation of G closes H, meaning that if $a, b \in H$, then $ab \in H$										
		nverses of H have closed forms, i.e., if $a \in H$ then $a^{-1} \in H$.								
	• •	All of the above	-		<i></i>					
15.		e elements of the set $\{1, i, -i, -1\}$ forms a	1	K2	<i>CO</i> 4					
10		emigroup (b) subgroup (c) cyclic group (d) abelian group	1	K2	<i>CO4</i>					
16.		complement of 0 is $0' = $	1	Λ2	004					
17		dant vertex is a vertex with degree? (d) ± 1	1	Kl	CO5					
17.	(a)	•	1	m	005					
18		w many edges are there in a complete graph with n vertices?	1	Kl	C05					
10.										
19.	1	K1	CO5							
		each of the m vertices is connected to each of the n vertices, a complete bipartite graph sists of edges?								
	(a) r	n+n (b) m-n (c) m.n (d) m/n								
20.	An a	acyclic undirected graph is called	1	Kl	<i>CO5</i>					
	(a) H	Regular(b) Complete(c) Circuit(d) Tree								
		$PART - B (10 \times 2 = 20 \text{ Marks})$								
01	T /	Answer ALL Questions	2	K2	C01					
		$f: \mathbb{Z} \to \mathbb{Z}$ be such that $f(x) = x + 1$. Is <i>f</i> invertible, and if it is, what is its inverse?	2							
22.	•	f and g be the functions from the set of integers to the set of integers defined by	2	K2	<i>CO1</i>					
22	•	$= 2x + 3$ and $g(x) = 3x + 2$. Find $f \circ g$ and $g \circ f$.	2	K2	<i>CO</i> 2					
23.		even colors are used to paint 50 bicycles, then show that at least 8 bicycles will be the e color.	2	Λ2	002					
24	2	K2	CO2							
	ow many ways can all the letters in MATHEMATICS be arranged? w that $(p \rightarrow r) \land (q \rightarrow r)$ and $(p \lor q) \rightarrow r$ are logically equivalent.	2	K2	CO3						
	2	к2 К2	CO3							
26. 27.	2	K2 K2	CO4							
27.	2	K2	CO4							
20. 29.	2	K2	CO5							
29. 30.	2	K1	C05							
50.	-		000							
		$\mathbf{D} \mathbf{A} \mathbf{D} \mathbf{T} = C \left(C \times 10 - C 0 \mathbf{M}_{\text{order}} \right)$								
		PART - C (6 × 10 = 60 Marks) Answer ALL Questions								
31.	a)	Let <i>m</i> be an integer with $m > 1$. Show that the relation $R = \{(a, b) \mid a \equiv b \pmod{m}\}$	10	K3	C01					
51.	<i>a)</i>	is an equivalence relation on the set of integers.								
		OR								
	h)	If $f: R \to R$ and $g: R \to R$ be any two function, where R is the set of all real	10	K3	C01					
	0)	numbers. Find $f \circ g$ and $g \circ f$ where $f(x) = x^2 - 2$, $g(x) = x + 4$. State whether these								
		functions are injective, surjective, and bijective.								
32.	a)	Prove by mathematical induction that $6^{n+2} + 7^{2n+1}$ is divisible by 43 for each	10	K3	CO2					
		positive integer.								
		OR								
	b)	Find the numbers between 1 to 500 that are not divisible by any of the integers 2 or 3	10	K3	CO2					
		or 5 or 7.								
33.	a)	Without using truth table find PDNF, PCNF of $(\neg p \rightarrow r) \land (q \leftrightarrow p)$.	10	K3	CO3					
		OP								

OR

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 2

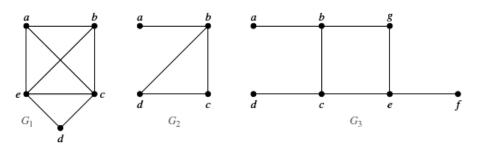
13327


- b) Use rules of inferences to obtain the conclusion of the following arguments:" Babu is 10 K3 CO3 a student in this class, knows how to write programmes in JAVA". "Everyone who knows how to write programmes in JAVA can get a high-paying job". Therefore, "someone in this class can get a high-paying job".
- 34. a) State and Prove Lagrange's theorem on finite groups. 10 K3 CO4

OR

- b) Prove that $G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right\}$ forms an abelian group under matrix multiplication.
- 35. a) Prove that the maximum number of edges in a simple disconnected graph G with n 10 K3 C05 vertices and k components is $\frac{(n-k)(n-k+1)}{2}$

OR


- b) Prove that a connected graph G is Euler graph if and only if every vertex of G is of 10 K3 CO5 even degree.
- 36. a) i) Determine whether the graphs are isomorphic are not

ii) In any group $\langle G, * \rangle$, show that $(a*b)^{-1} = b^{-1}a^{-1}$, for all $a, b \in G$

OR

- b) i) If * is the operation defined on $S = Q \times Q$ where Q is the set of all rational numbers ⁵ K³ CO4 and given by (a, b) * (x, y) = (ax, ay + b), then show that (S,*) is a semigroup. Is it commutative?
 - ii) Which of the simple graphs given have a Hamilton circuit or if not a Hamilton path 5 K3 CO5

3

5

K3

CO5

CO4