Reg.	No.	
	1 100	

Question Paper Code

Duration: 3 Hours

B.E. / B.Tech. / M. Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2024

12731

Second Semester

Computer Science and Engineering

(Common to Computer Science and Engineering (AIML), Computer Science and Engineering (IoT), Computer Science and Engineering (CS), Artificial Intelligence and Data Science, Information Technology & M.Tech - Computer Science and Engineering)

20BSMA204 - DISCRETE STRUCTURES

Regulations - 2020

Max. Marks: 100

12731

	PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions	Marks	K– Level	со
1.	Define partial ordered relation.	2	<i>K1</i>	<i>CO1</i>
2.	Let $f: R \to R$ be given by $f(x) = x^3 - 2$, find f^{-1} .	2	K2	C01
3.	How many permutations are there on the word 'MATHEMATICS'?	2	K2	<i>CO2</i>
4.	State the Pigeonhole principle.	2	<i>K1</i>	<i>CO2</i>
5.	Write the contra positive of "If there is rain then I buy an umbrella'.	2	K2	СО3
6.	Express the statement "Good food is not cheap" in symbolic form.	2	K2	СО3
7.	Define subgroup.	2	<i>K1</i>	<i>CO4</i>
8.	Define cyclic group.	2	K1	<i>CO</i> 4
9.	State Hand shaking theorem.	2	<i>K1</i>	<i>CO5</i>
10.	Define a path in a graph.	2	K1	<i>CO5</i>

PART - B $(5 \times 16 = 80 \text{ Marks})$

		Answer ALL Questions			
11.	a) i)	Let Z be the set of integers. Define a relation R on Z by	8	K3	<i>CO1</i>
		$R = \{(x, y) \in Z \times Z : x - y \text{ is divisible by 3}\}$ Then show that R is			
		an equivalence relation.			
	•• \		0	V_{2}	CO1

ii) Determine which of the following functions are bijective, where ⁸ K3 CO. $f: R \rightarrow R$, defined by (i) $f(x) = 3x^3 + x$; (ii) $f(x) = -4x^2 + 12x - 9$.

OR

b) i) Prove that the inverse of a function f is unique if it exists. ii) Let f(x) = x + 2, g(x) = x - 2 and h(x) = 3x for $x \in R$. where R is the set of all real numbers. Find $g \circ f$, $f \circ g$, $f \circ f$, $g \circ g$, $f \circ h$, $h \circ g$, $h \circ f$, $f \circ h \circ g$

12. a) i) Prove by mathematical induction, n³ + 2n is divisible by 3 for n ≥ 1.
8 K3 CO2
ii) How many permutations can be made out of the letters of the word
8 K3 CO2
COMPUTER"?How many of these (i) begin with C (ii) end with R
(iii) Begin with C and End with R (iv) C and R occupy the end places.

OR

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

- b) i) Prove by mathematical induction $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}.$
 - ii) Find the number of integers between 1 to 100 that are divisible by the 8 K3 CO2 integers 2,3,5 or 7
- 13. a) i) Prove that the premises $P \rightarrow Q, \ Q \rightarrow R, \ R \rightarrow S, \ S \rightarrow \neg R \ and \ P \land S \ are inconsistent.$
 - ii) Using the rule CP or otherwise show the following implications. $(\exists x)P(x) \rightarrow (x)Q(x) \Rightarrow (x)(P(x) \rightarrow Q(x))$ 8 K3 CO3

- b) i) Show that $(P \lor Q) \land \neg (\neg P \land (\neg Q \lor \neg R)) \lor (\neg P \land \neg Q) \lor (\neg P \land \neg R)$ 8 K3 CO3 is a tautology.
 - ii) Show that the premises "one student in this class knows how to write 8 K3 CO3 programs in JAVA" and "everyone who knows how to write programs in JAVA can get a high-paying job" imply the conclusion "someone in this class can get a high-paying job".

14. a) State and prove Lagrange's theorem in a group. 16 K3 CO4

OR

- b) i) Let $G = \{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \}$, show that G is a ⁸ K3 CO4 group under the operation of matrix multiplication.
 - ii) In any Boolean algebra, prove that the following statements are 8 K3 CO4 equivalent

(i)
$$a + b = b$$
; (ii) $a \cdot b = a$; (iii) $a' + b = 1$; (iv) $a \cdot b' = 0$

15. a) Prove that the maximum number of edges in a simple disconnected ¹⁶ K3 CO5 graph G with n vertices and k components is $\frac{(n-k)(n-k+1)}{2}$.

OR

b) i) Determine whether the graphs are isomorphic or not.

b) ii) Give an example of a graph which is

- (1) Eulerian but not Hamiltonian
- (2) Hamiltonian but not Eulerian
- (3) Hamiltonian and Eulerian
- (4) Neither Hamiltonian nor Eulerian.

8 K3 CO5

K3 CO5

8

12731