Reg. No.						

Question Paper Code 1

12454

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2023

Third Semester

CIVIL ENGINEERING

(Common to Electronics and Communication Engineering, Electrical and Electronics Engineering, Electronics and Instrumentation Engineering, Instrumentation and Control Engineering & Computer and Communication Engineering)

20BSMA301 – LINEAR ALGEBRA, PARTIAL DIFFERENTIAL EQUATIONS AND TRANSFORMS

(Regulations 2020)

Duration: 3 Hours

Max. Marks: 100

PART - A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions

1	Show that the western $(1,2,2)(2,2,1)(1,(-5))$ in D^3 are linearly demondent.	Marks, K-Level, CO 2 K2 CO1
1.	show that the vectors $(1,2,3),(3,-2,1),(1,-0,-3)$ in R^2 are linearly dependent over R .	2,112,001
2.	State the necessary and sufficient condition for a subset W to be subspace of a vector space V over F.	2,K1,CO1
3.	State Dimension theorem for Linear transformation.	2,K1,CO2
4.	Let $x = (2, 1 + i, i)$ and $y = (2 - i, 2, 1 + 2i)$ be vectors in C^3 . Compute $\langle x, y \rangle$.	2,K2,CO2
5.	Solve $[D + D' - 1][D - 2D' + 3]z = 0.$	2,K2,CO3
6.	Solve $\sqrt{p} + \sqrt{q} = 1$.	2,K2,CO3
7.	Define Fourier sine transform pair.	2,K1,CO4
8.	If $F(s)$ is the Fourier Transform of $F(x)$, prove that $F\{f(ax)\} = \frac{1}{a}F\left(\frac{s}{a}\right), a \neq 0.$	2,K2,CO4
9.	Find the Z-transform of $\frac{1}{2}$.	2,K2,CO5
10.	Form a difference equation from $y_n = A.3^n$.	2,K2,CO5

PART - B (5 × 16 = 80 Marks) Answer ALL Questions

11. a) Prove that the set of all $m \times n$ matrices over F denoted by $M_{m \times n}(F)$ is ^{16,K3,CO1} a vector space over F with respect to matrix addition and scalar multiplication.

OR

b) (i) Determine if the set $\{x^3 + 2x^2, -x^2 + 3x + 1, x^3 - x^2 + 2x - 1\}$ is linearly dependent or linearly independent in $P_3(R)$.

(ii) Determine whether the given vector $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, is in the span of *S*, ^{8,K3,COI} where $S = \{ \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \}$.

12. a) Find an orthogonal basis of the inner product space $R^3(R)$ with ^{16,K3,CO2} standard inner product, given the basis $B = \{(1,1,0), (1,-1,1), (-1,1,2)\}$ using Gram-Schmidt orthogonalization process. Also find the Fourier coefficients of the vector (2,1,3) relative to orthonormal basis.

OR

- b) (i) If $T: \mathbb{R}^2 \to \mathbb{R}^3$ is a linear transformation such that T(1,1) = (1,0,2), 10, K3, CO2T(2,3) = (1,-4,4)
 - 1. Determine T
 - 2. *T*(2, 5) & *T*(8,11)
 - 3. Rank T
 - 4. Is T one-to-one?

(ii) Let V = P(R), the vector space of polynomials over R with inner ^{6,K3,CO2} product defined by $\sqrt{f(r)} = \int_{0}^{1} f(r) g(r) dr$, where f(r) = r + 2

product defined by
$$\langle f,g \rangle = \int_{0}^{0} f(t)g(t)dt$$
, where $f(t) = t + 2$,
 $g(t) = t^{2} - 2t - 3$. Find $\langle f,g \rangle$, $||f||$ and $||g||$.

13. a) (i) Solve
$$(3z - 4y)p + (4x - 2z)q = 2y - 3x$$
.
(ii) Form the partial differential equation by eliminating f from $f(x^2 + y^2 + z^2, x + y + z) = 0$.
(i) Solve $\begin{bmatrix} D^3 - 7DD'^2 - 6D'^3 \end{bmatrix} z = \sin(x + 2y) + e^{2x+y}$.
(ii) Solve $z = px + qy + \sqrt{1 + p^2 + q^2}$.
14. a) Find the Free interaction for $f(x) = \begin{pmatrix} 1 & if |x| < a \\ 0 & 1 & 1 \\ 0 & 1 &$

Find the Fourier transform of $f(x) =\begin{cases} 1 & if & |x| < a \\ 0 & if & |x| \ge a \end{cases}$. Hence deduce that $\int_0^\infty \frac{\sin t}{t} dt = \frac{\pi}{2}$ and $\int_0^\infty \left(\frac{\sin t}{t}\right)^2 dt = \frac{\pi}{2}$.

OR

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12454

b) (i) Evaluate
$$\int_{0}^{\infty} \frac{x^2 dx}{(x^2 + 1)^2}$$
 using Parseval's identity.
8,K3,CO4

(ii) Evaluate
$$\int_{0}^{\infty} \frac{dx}{(x^2 + a^2)(x^2 + b^2)}$$
 using Fourier transforms. 8,K3,CO4

15. a) (i) Find the inverse Z-transform of ^{10z}/_{z²-3z+2} using partial fraction ^{8,K3,CO5} method.
(ii) Using Z-transform, solve y_{n+2} + 6y_{n+1} + 9y_n = 2ⁿ given ^{8,K3,CO5}

OR

that $y_0 = 0$, $y_1 = 0$.

b) (i) Using convolution theorem, find inverse Z – transform 8,K3,CO5 of $\frac{z^2}{(z-a)(z-b)}$.

(ii) Find the Z-transform of $a^n \sin n\theta$ and $a^n \cos n\theta$. Hence find Z- ^{8,K3,CO5} transform of $\cos n\theta$ and $\sin n\theta$.