	Reg. I	No.								
Question Pape	er Code	1	3168							
B.E. / B.Tech DEGRE	E EXAMIN	ATIO	NS, N	OV /	DEC	2024	ļ			
	Third Seme	ster								
MECHAN	NICAL ENG	INEE	RING							
(Common to Mechai	nical and Au	tomatio	on Eng	gineer	ing)					
20BSMA303 - PARTIAL DIFFERENT	TIAL EQUA	TION	S ANI) PRO	OBAI	BILIT	ГҮ ТІ	HEO	RY	
Re	egulations - 2	2020								
(Use of sta	atistical table	is perr	nitted)						
Duration: 3 Hours		-					Ma	x. Ma	arks:	100
PART - A (M Answ	CQ) (20 × 1 er ALL Ques		Aarks)				Mark	K– S Level	со
1. If the particular integral of a partial different $(p_1^2 + 2p_2^2) + p_3^2$	•							1	K2	C01

	ii me partie and integrat of a partial atteretion of antion			
	$(D^2 + 2DD' + D'^2)z = \cos(x + 2y)$ is $K\cos(x + 2y)$, then $K = $			
	(a) $-1/9$ (b) $1/9$ (c) $1/8$ (d) $-1/8$			
2.	The partial differential equations of $z = ax^2 + by^2$ eliminating a and b is	1	K2 (CO1
	(a) $z = xp + yq$ (b) $2z = xp + yq$ (c) $z = xp - yq$ (d) $2z = xp - yq$.			
3.	The solution of partial differential equation $(D^3 - 2D^2D' - DD'^2 - 2D^3) z = 0$ is	1	K2 (CO1
	(a) $z = f_1(y + x) + f_2(y - x) + f_3(y + 2x)$			
	(b) $z = f_1(y - 3x) + f_2(y - x) + f_3(y + 2x)$			
	(c) $z = f_1(y + 9x) + f_2(y - x) + f_3(y + 2x)$			
	(d) $z = f_1(y + x) + f_2(y - x) + f_3(y - 2x)$			
4.	The partial differential equation of $z = ax + by + ab$ by eliminating a and b is	1	K2 (CO1
	(a) $z = px + qy + pq$ (b) $z = px - qy + pq$			
	(c) $z = px + qy - pq$ (d) $z = -px - qy - pq$			
5.	$16 p^2 4 q a b^2 u b^2 u c b^2 u c^2 u c$	1	K1 (CO2

If
$$B^2 - 4AC < 0$$
, then $A \frac{\partial^2 u}{\partial x^2} + B \frac{\partial^2 u}{\partial x \partial y} + C \frac{\partial^2 u}{\partial y^2} + f \left[x, y, u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y} \right] = 0$ is classified as
(a) Elliptic equation (b) Parabolic equation

6. How many boundary conditions are required to solve the one dimensional wave K1 CO2 1 equations? (b) Two (a) Four (c) Three (d) One

7. The suitable solution of one dimensional heat flow equation

 $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ is (a) $u(x, t) = (A \cos Px + B \sin Px)(C \sin pat + D \cos pat)$ (b) $u(x,t) = (A \cos Px - B \sin Px)(C \sin pat - D \cos pat)$ (c) $u(x,t) = (A \cos Px + B \sin Px)e^{-\alpha^2 P^2 t}$ (d) None of the above 8. 1 K1 CO2 In the wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ what does c^2 stand for? (b) $\frac{m}{T}$ $(c)\frac{T^2}{m}$ (a) $\frac{T}{m}$ (d) $\frac{T}{m^2}$ K2 CO3 9. The Fourier cosine transform of e^{-3x} is 1

(a)
$$\sqrt{\frac{2}{\pi}} \left[\frac{s}{s^2 + 3^2} \right]$$
 (b) $\sqrt{\frac{2}{\pi}} \left[\frac{3}{s^2 + 3^2} \right]$ (c) $\sqrt{\frac{1}{\pi}} \left[\frac{s}{s^2 + 3^2} \right]$ (d) None of the these

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

13168

K1 CO2

1

10.	The linear property on Fourier transform states that $F[af(x) + bg(x)] =$	1	K1	СО3						
11.	(a) $aG(s)+bF(s)$ (b) $aF(s)-bG(s)$ (c) $aF(s)-bG(s)$ (d) $aF(s)+bG(s)$	1	K2	CO3						
11.	The Fourier sine transform of e^{-} , $a > 0$ is									
	(a) $\sqrt{\frac{2}{\pi}} \left(\frac{s}{s^2 + a^2}\right)$ (b) $\sqrt{\frac{2}{\pi}} \left(\frac{a}{s^2 - a^2}\right)$ (c) $\sqrt{\frac{2}{\pi}} \left(\frac{a}{s^2 + a^2}\right)$ (d) $\sqrt{\frac{2}{\pi}} \left(\frac{s}{s^2 - a^2}\right)$									
12.	The Fourier transform of the convolution of two functions $f(x)$ and $g(x)$, $F(f(x) * g(x))$	1	K1	СО3						
10	(a) $F(f(x)) * F(g(x))$ (b) $f(x)g(x)$ (c) $F(f(x))F(g(x))$ (d) $f(x) * g(x)$	1	K1	CO4						
13.	A random variable whose set of possible values is either finite or countably infinite is called	1	<u>K</u> 1	004						
	(a) continuous random variable (b) discrete random variable									
	(c) random process (d) None of these			<i>co</i> (
14.	The c.d.f of a continuous random variable is given by $F(x) = \begin{cases} 0, & x < 0 \\ 1 - e^{-x/5}, & 0 \le x < \infty \end{cases}$, then	1	K2	<i>CO4</i>						
	The claim of a continuous function variable is given by $T(x) = \begin{bmatrix} 1 - e^{-x/5} & 0 \le x < \infty \end{bmatrix}$, then									
	the probability density function is									
	(a) $\frac{1}{3}e^{-x/5}$ (b) $\frac{1}{2}e^{-x/5}$ (c) $\frac{1}{5}e^{-x/5}$ (d) $\frac{1}{15}e^{-x/5}$									
15.		1	К2	CO4						
15.	If the pdf of a random variable X is given by $f(x) = \begin{cases} \frac{1}{4}, -2 < x < 2\\ 0, & \text{elsewhere} \end{cases}$ then find the mean value of X			001						
	value of X.									
	(a) 0 (b) 1 (c) $\frac{1}{2}$ (d) $\frac{1}{4}$									
16	In Binomial distribution, $E(X)$ is	1	K1	<i>CO4</i>						
	(a) np (b) npq (c) n^2p^2 (d) $np - npq$									
17.	Let (X,Y) be a two independent continuous random variable with joint pdf $f(x,y)$ then									
	(a) $f(x, y) = f_y(y)$ (b) $f(x, y) = f_y(x)$									
	(c) $f(x, y) = f_X(x)f_Y(y)$ (d) $f(x, y) \neq f_X(x)f_Y(y)$									
18.	If $f(x, y) = k(1 - x - y)$, $0 < x, y < \frac{1}{2}$ is a joint density function, then the value of k is	1	K3	CO5						
	(a) $\frac{1}{2}$ (b) 4 (c) 8 (d) $\frac{1}{8}$									
19.	The rank correlation coefficient lies between $(0,0)$	1	K1	CO5						
17.	(a) 0 and 1 (b) 1 and -1 (c) -1 and 1 (d) None of these									
20.	If X and Y are two independent random variables then $E[XY] = E(X) - E(Y)$ which	1	Kl	CO5						
	implies $Cov(X,Y)$ is equal to									
	(a) 1 (b) 0 (c) -1 (d) None of these									
	PART - B ($10 \times 2 = 20$ Marks)									
	Answer ALL Questions			~~.						
	Find the PDE by eliminating the arbitrary constants a & b from $z = (x^2 + a)(y^2 + b)$.	2		CO1						
	Solve $(D - 1)(D - D' + 1) z = 0$.	2	K2	CO1						
	Classify the equation $f_{xx} + 2f_{xy} + 4f_{yy} = 0$.	2	K2	CO2						
24.	A rod 30 cm long has it ends A and B kept at 20° cand 80° c respectively. Until the steady state condition provide Illustrate the steady state temperature in the red	2	K2	<i>CO2</i>						
25.	state condition prevails Illustrate the steady state temperature in the rod. State Fourier integral theorem.	2	K1	CO3						
	Find the Fourier cosine transform of $e^{-ax}x \ge 0$.	2	K2	CO3						
20. 27.	Given the probability density function $f(x) = \frac{k}{1+x^2}$, $-\infty < x < \infty$, find the value of k.	2	K2	CO4						
	Given the probability density function $f(x) = \frac{1}{1+x^2}, -\infty < x < \infty$, find the value of K.									

27. Given the probability density function $f(x) = \frac{k}{1+x^2}$, $-\infty < x < \infty$, find the value of k. 28. State the memoryless property of geometric distribution.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

K1 CO4

2

2

29. Define covariance of <i>X</i> , <i>Y</i> and coefficient of correlation between <i>X</i> and <i>Y</i> . 2	K1	<i>CO5</i>
--	----	------------

30. Find the correlation co-efficient r_{XY} if cov(x,y) = 12, Var(x) = 9, Var(y) = 25.

PART - C ($6 \times 10 = 60$ Marks)

Answer ALL Questions

31. a) Form the PDE by eliminating the arbitrary function φ from 10 K3 CO1 $\varphi(x^2 + y^2 + z^2, ax + by + cz) = 0.$

OR

- b) Solve: $(D^2 3DD' + 2D'^2) z = 8 \sin(x + 3y).$ 10 K3 COI
- 32. a) A string is stretched and fastened to points at a distance 'l' apart .Motion is started ¹⁰ K³ CO² by displacing the string in to the form $y = asin\left(\frac{\pi x}{l}\right)$, 0 < x < l, from which it is released at time t = 0. Examine the displacement at any time t.

OR

b) An infinitely long rectangular plate with insulated surface is 10cm wide. The two 10 K3 CO2 long edges and one short edges are kept at zero temperature, while the other short edge x = 0 is kept at temperature given by $u(0, y) = \begin{cases} 20y, \ 0 \le y \le 5\\ 20(10 - y), 5 \le y \le 10 \end{cases}$. Examine the steady state temperature at any point.

33. a) Find the Fourier transforms of
$$f(x) = \begin{cases} 1 - |x|if|x| < 1\\ 0 & for |x| > 1 \end{cases}$$
 and hence deduce the value of $\int_0^\infty \frac{\sin^2 t}{t^2} dt$.

OR

- b) Evaluate $\int_0^\infty \frac{dx}{(x^2+a^2)(x^2+b^2)}$ using Fourier transforms.
- 34. a) A random variable *X* has the following probability distribution.

X	0	1	2	3	4	5	6	7
P(x)	0	Κ	2 <i>K</i>	2 <i>K</i>	3 <i>K</i>	K^2	$2K^2$	$7K^2 + K$

Find:

- (i) The value of K
- (ii) P(1.5 < X < 4.5 / X > 2)
- (iii) Evaluate *P*(*X*≤6), *P* (*X*≥6), and *P*(0<*X*<5).

OR

- b) Assume that the reduction of a person's oxygen consumption during a period ¹⁰ K³ CO⁴ of Transcendental Meditation (T.M) is a continuous random variable X normally distributed with mean 37.6 cc/mm and S.D 4.6 cc/min. Determine the probability that during a period of T.M. a person's oxygen consumption will be reduced by
 - (i) At least 44.5 cc/min
 - (ii) Atmost 35.0cc/min
 - (iii) Anywhere from 30.0 to 40.0 cc/mm.
- 35. a) The joint probability mass function of (X, Y) is given by P(x, y) = k(2x + 3y), ¹⁰ K3 CO5 $x = \{0, 1, 2\}; y = \{1, 2, 3\}$. Find all the marginal and conditional probability distributions.

OR

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

10

10

K3 CO3

K3 CO4

	b)	Obtain the equation of the lines of regression from the following data:								10	K3	CO5
				*			•		6			
		Y:	9	8	3 10	12	11	13	14			
36.	a) i)	I at th	a n d f	of V h	a airran h	$f(\alpha)$	$-\int \frac{1}{2}$	$e^{-\frac{x}{2}}$,	$x \ge 0$ otherwise	5	K3	<i>CO4</i>
		Let u	le p.a.i	01 A 0	e given d	y	$= \int_{0}^{2}$		otherwise			
							,					
	::)	Compute i) $P\left(X > \frac{1}{2}\right)$ ii) Moment generating function for X.									K3	CO5
	ii)	Let the joint p.d.f .of(X, Y) is given by $f(x, y) = \begin{cases} Cxy^2, & 0 \le x \le y \le 1\\ 0, & otherwise \end{cases}$.									КJ	005
		Determine the										
		(i) V	alue of	Ċ								
		(ii)	Margin	al p.d.f	. of X&Y	•						
			C	-			0	R				
	b) i)) Starting at 5.00 am every half hour there is a flight from san Francisco airport to										<i>CO4</i>
		Los A	Angeles	Intern	ational A	irport.	Suppos	se that	none of these planes is completely			

- sold out and that they always have room for passengers. A person who wants to fly to L.A. arrives at the airport at a random time between 8.45 a.m. and 9.45 a.m. find the probability that she waits 1) at most 10 mins. 2) at least 15 mins.
- ii) The joint pdf of a two-dimensional random variable (X, Y) is given by K3 CO5 5 $f(x, y) = xy^{2} + \frac{x^{2}}{8}, 0 \le x \le 2; 0 \le y \le 1. \text{ Compute (1) } P[X > 1]$ $(2) P\left[Y < \frac{1}{2}\right].$

(2)
$$P | Y < \frac{1}{2}$$