	Reg. No.														
	Question Paper Code 12904														
	B.E. / B.Tech DEGREE EXAMIN	ATIO	NS,	APF	RIL	/ M	IAY	202	4						
Third Semester															
Mechanical Engineering															
(Common to Mechanical and Automation Engineering)															
20BSMA303 - PARTIAL DIFFERENTIAL EQUATIONS AND PROBABILITY															
THEORY															
Regulations - 2020															
(Use of Statistical Table is permitted)															
Duration: 3 Hours Max. Marks: 100															
$PART - A (10 \times 2 = 20 \text{ Marks})$											Marks $\frac{K}{Level}$ CO				
1.	Answer ALL Questions Form a partial differential equation by eliminating the arbitrary constants from $\pi = a w^2 + b w^2$										CO1				
2.	from $z = ax^2 + by^2$. Find the complete integral of $p + q = 1$.										COI				
3.	Classify the PDE $f_{xx} - 2f_{xy} = 0$ for $x > 0$ &	v > 0							2	Kl	CO2				
4.	A rod 30cm long has its ends A and B kept at $20^{\circ}C$ and $80^{\circ}C$ respectively ² K ² CO ² until steady state conditions prevail. Find the steady state temperature in the rod.														
~	State change of scale property of Fourier Transform.								2		CO3				
6.	Find sine transform of $\frac{1}{x}$.								2		CO3				
7.	A discrete R.V X has moment generating function $M_X(t) = \left(\frac{1}{4} + \frac{5}{4}e^t\right)$								2	K2	<i>CO4</i>				
8	Find $E(X)$. State the memory less property of Geometric d	istribu	tion						2	K1	CO4				
	A continuous random variable <i>X</i> follows the probability law								2	K2	CO5				
	$f(x) = Ax^2, 0 \le x \le 1$. Determine A. Can $y = 5 + 2.8x$ and $x = 3 - 0.5y$ be the regression lines of Y on X and X on Y respectively. Give suitable arguments.								2	K2	CO5				
PART - B (5 × 16 = 80 Marks) Answer ALL Questions															

- 11. a) i) Solve (mz ny)p + (nx lz)q = ly mx. 8 K3 CO1
 - ii) Form the partial differential equation by eliminating the arbitrary function from $f(x^2 + y^2 + z^2, x + y + z) = 0$. OR 8 K3 CO1

12904

b) i) Solve
$$\left[D^3 - 7DD'^2 - 6D'^3\right]z = \sin(x + 2y) + e^{2x+y}$$
.

ii) Solve
$$z = px + qy + p^2 q^2$$
.

12. a) A string is stretched and fastened to two end points l apart. Motion is l^{6} K3 CO2 started by displacing the string in to the form $y = k(lx - x^{2})$ from which it is released at a time t = 0. Find the displacement of any point of the string at a distance x from one end at any time t.

OR

b) A rectangular plate with insulated surface is 10cm wide and so long ¹⁶ K3 CO2 compared to its width that it may be considered infinite in length without introducing appreciable error. the temperature at shot edge y = 0 is given by $u(x) = \begin{cases} 20x, & 0 \le x \le 5 \\ 20x, & 0 \le x \le 5 \end{cases}$ and all other three edges are kent

$$u(x) = \begin{cases} 20(10 - x), & 5 \le x \le 10 \end{cases}$$
 and all other three edges are kept at 0°C. Find the steady state temperature at any point in the plate.

13. a) Find the Fourier transform of $f(x) = \begin{cases} 1 - |x| & |x| < 1 \\ 0 & |x| \ge 1 \end{cases}$ and hence evaluate $\int_0^\infty \frac{\sin^2 t}{t^2} dt$ and $\int_0^\infty \frac{\sin^4 t}{t^4} dt$.

b) i) Prove that $f(x) = e^{-x^2/2}$ is self-reciprocal under the Fourier cosine transform.

ii) Evaluate
$$\int_0^\infty \frac{dx}{(a^2+x^2)^2}$$
.

14. a) i) A discrete random variable X has the probability function,

x	1	2	3	4	5	6	7	8		
p(x)	2a	4a	6а	8a	10a	12a	14a	4a		

1. Find the value of a

2. Find
$$P(X \ge 3), P(X < 3)$$

- 3. Find the distribution function.
- ii) Let X follows normally distribution with mean of 12 and Standard ⁸ K3 CO4 deviation is 4. Find the probability of the following:

(i) $X \ge 20$ (ii) $0 \le X \le 12$.

OR

- b) i) The mileage which car owners get with certain kind of radial tyre is a ⁸ K³ CO⁴ random variable having an exponential distribution with mean 4000 km. Find the probabilities that one of these tyres will last (1) atleast 2000 km (2) at most 3000km.
 - ii) In a bolt factory, machines A, B, C manufacture 25%, 35%, 40% of ⁸ K3 CO4 the total output respectively. Out of their outputs 5, 4, 2 percent respectively are defective bolts. A bolt is drawn at random from the product and is found to be defective. What are the probabilities that it was manufactured by machines A?

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

12904

K3 CO4

8

15. a) The joint probability mass function of (X, Y) is given by $P(x, y) = k(2x + 3y), \quad x = 0, 1, 2, y = 1, 2, 3.$ Find the marginal probability distributions. Also find the probability distribution of X + Y and the conditional probability P(X/Y = 1).**OR**

b) i) Find the coefficient of correlation between X and Y from the data 10 K3 CO5 given below.

<i>X</i> :	65	66	67	67	68	69	70	72
<i>Y</i> :	67	68	65	68	72	72	69	71

ii) Let X_1, X_2, \dots, X_n be Poisson variates with parameter $\lambda = 2$. 6 K3 CO5 Let $S_n = X_1 + X_2 + \dots + X_n$, where n = 75, Find $P[120 \le S_n \le 160]$ using the central limit theorem.