		Reg	g. No.									
	Question Paper Co	Paper Code 12457										
	BE / B. Tech / M.Tech DEGREE	E EX	AMIN	ATIC	DNS	5, N	IOV	/ DI	EC	202	3	
	Third	Sen	nester									
	Computer Science	ce ar	nd Eng	ineeri	ing							
(Co	ommon to Information Technology & M	1.Tec	ch Co	mput	er S	cie	nce a	and	Eng	ginee	ering	g)
	20BSMA304 - STATISTIC	CS A	ND LI	NEAF	R A	LG	EBR	A				
	(Use of Statistica	l tab	le is pe	rmitte	ed)							
	(Regulat	tions	2020)									
Dur	ation: 3 Hours							Max	к. М	lark	s: 1()0
	PART - A (10 Answer Al	× 2 =	= 20 M	arks)								
1.	Find the median of the set of observati	ions	26,27,2	28,18,	35,2	26,2	20,35	5,40,	26.		Ма K-Le 2,К2	u rks, vel, CC 2,CO1
2.	Determine the binomial distribution for 3.	or w	hich th	e mea	n is	s 4	and	vai	rian	ce	2,K1	,CO1
3.	Define Type I and Type II errors.										2,K1	,CO2
4.	Give two uses of γ^2 distribution.							2,K1	,CO2			
5.	Test whether $v_1 = (1, -2, 3), v_2 = (5, 4)$ dependence or linear independence?	,6, -1	l) and	v ₃ = ((3,2	,1)	form	n a	line	ar	2,K2	2,CO3
6.	Check whether the set $S = \{1 + 2x \text{ forms a basis for } P_2(R)\}$?	$-x^2$	² , 4 — 2	x + x	² ,-	-1	+ 18	x –	9 <i>x</i>	² }	2,K2	2,CO3
7.	Test the map $T: R \rightarrow R$ defined by transformation.	y T((x) = x	+3	1 x	$\in I$	R is	a	line	ar	2,K2	,CO4
8.	State dimension theorem for Linear Transformation.									2,K1	,CO4	
9.	If <i>u</i> and <i>v</i> are any two vectors in an $ u + v ^2 + u - v ^2 = 2(u ^2 + u ^2)$	inne v∥²)	r produ	uct sp	ace	, th	nen p	orov	e th	nat	2,K1	,CO5
10.	Prove that in an inner product space $+\bar{\beta} < u, w > .$	V(F	$F), < u_{1}$	αν +	βν	v >	$ = \overline{\alpha} $	< 1	ı, v	>	2,K2	,CO5
	PART - B (5 ×	< 16 =	= 80 M	arks)								
11.	a) (i) Find the M.G.F. of Binomial of variance	LL Q distri	bution	ns and h	enc	e fi	nd n	nean	and	ł	8,K2	2,CO1
	(::) If a man 1 and a man 1 1 V f 11	~ ~ D		.1:			~~~ 1	41			8 K 7	, col

(ii) If a random variable X follows a Poisson distribution such that P(X = 2) = 9P(X = 4) + 90P(X = 6) Find λ , the mean and variance of X.

OR

b) (i) Calculate the co-efficient of correlation from the following data: 8,K2,COI

X	25	30	28	29	32	24	36	28	27	21
Y	18	20	21	16	14	13	22	15	19	12

⁽ii) If X is a normal variate with mean 30 and S.D =5, then find 8,K2,COI (i) $P(26 \le X \le 40)$ (ii) $P(X \ge 45)$ (iii) P(|X - 30| > 5)

- 12. a) (i) A random sample of 400 mangoes was taken from a large ^{8,K3,CO2} consignment and 40 were found to be bad. Is this a sample from a consignment with proportion of bad mangoes 7.5%?
 - (ii) The following data relate to a random sample of government *8,K3,CO2* employees in two states of the Indian Union:

State	Size	Mean Monthly income of Employees	Variance
Ι	16	440	40
II	25	460	42

Test whether the samples come from the normal population with same variance.

OR

- b) The theory predicts that the proportion of beans in the four groups ^{16,K3,CO2} A,B,C and D should be 9:3:3:1.In an experiment among 1600 beans, the numbers in the four groups were 882, 313, 287 and 118. Do the experimental results support the theory?
- 13. a) Prove that set of ordered n-tuples $(a_1, a_2, \dots, a_{n_i}) \in \mathbb{R}^n$ forms a vector ^{16,K3,CO3} space under usual addition and scalar multiplication.

OR

- b) $u_1 = (2, -3, 1), u_2 = (1, 4, -2), u_3 = (-8, 12, -4), u_4 = 16, K3, CO3$ (1,37, -17), $u_5 = (-3, -3, 8)$ generate R³. Find a subset of the set $\{u_1, u_2, u_3, u_4, u_5\}$ that forms a basis for R
- 14. a) (i) Let $T: \mathbb{R}^2 \to P_2(\mathbb{R})$ be a linear transformation such that $T(1,1) = {}^{8,K3,CO4}$ $2 - 3x + x^2$, $T(2,3) = 1 - x^2$. Determine T and find T(-1,2), T(-5,2). Also find the rank and nullity of T.

(ii) Suppose $T: \mathbb{R}^2 \to \mathbb{R}^2$ is linear, T(1,0) = (1,4), T(1,1) = (2,5). What is T(2,3)? Is T one- to- one?

b) Let $T: \mathbb{R}^2 \rightarrow \mathbb{R}^3$ is a linear transformation such that T(1,1) = (1,0,2), T(2,3) = (1,-1,4). Then find (i) T (ii) T(2,5), T(8,11) (iii)Rank T

Is T one-one function or onto function?

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12457

- 15. a) (i) Let $u = (a_1, a_2, ..., a_n)$, $v = (b_1, b_2, ..., b_n) \in F^n(C)$. Define ^{8,K3,CO5} $< u, v > = a_1\overline{b_1} + a_2\overline{b_2} + \dots + a_n\overline{b_n}$. Verify whether it is an inner product space of F^n .
 - (ii) Let u = (2, 1+i, i), v = (2-i, 2, 1+2i) be vectors in $C^3(C)$. ^{8,K3,CO5} Compute using the standard inner product $\langle u, v \rangle$, ||u||, ||v|| and ||u + v||.

OR

b) In an inner product space $R^3(R)$ with the standard inner product, ^{16,K3,CO5} $B = \{(1,0,1), (1,0,-1), (0,3,4)\}$ is a basis. By Gram-Schmidt Orthogonalization process, find an orthogonal basis. Hence find an orthonormal basis.