

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2024

Third Semester

Computer Science and Engineering

(Common to Information Technology and M.Tech Computer Science and Engineering)

20BSMA304 - STATISTICS AND LINEAR ALGEBRA

Regulations - 2020

(Use of Statistical table may be permitted)

Duration: 3 Hours

Duration: 3 Hours Max		. Marks: 100			
PART - A (10 × 2 = 20 Marks)	Marks	K –	co		
Answer ALL Questions	MUIKS	Level	ιυ		
1. The mean of Binomial distribution is 20 and standard deviation is 4. Find	2	K1	CO1		
the parameters of the distribution.					
2. The regression equations are $x + 6y = 14$ and $2x + 3y = 1$. Point out the	2	K2	<i>CO1</i>		
correlation coefficient between X & Y.					
3. What are null and alternate hypothesis?	2	K1	CO2		
4. What are the expected frequencies of 2x2 contingency table?	2	Kl	CO2		
ab					
5 Define Subspace of a vector space	2	K1	CO3		
5. Define Subspace of a vector space. 6. Write the vectors $n = (1, 2, 5)$ as a linear combination of the vectors	2	K3	CO3		
6. Write the vectors $V = (1, -2, 5)$ as a linear combination of the vectors $w = (1, 1, 1)$, $w = (1, 2, 2)$ and $z = (2, -1, 1)$.	-	110	005		
x = (1,1,1), y = (1,2,5) and $z = (2,-1,1)7 Drave that the transformation T is linear if and only if$	2	к?	CO4		
7. Prove that the transformation 1 is linear 11 and only 11 T(au + a) = aT(a) + T(a)	2	112	004		
$\frac{1}{(cx + y)} - \frac{cI(x) + I(y)}{(x + 1)(x)}$	2	к?	CO4		
o. Show that the transformation $T: R \to R$ defined by $T(\alpha, \alpha) = (\alpha + 1, 2\alpha, \alpha + \alpha)$ is not linear	2	112	007		
I(x, y) = (x + 1, 2y, x + y) is not linear.	2	к?	CO5		
9. Define finite Flocult Space and give its axions. 10. Let S and T be linear energies on V then prove that $(\mathbb{C} \to \mathbb{T})^* = \mathbb{C}^* \to \mathbb{T}^*$	2	K1	CO5		
To. Let S and T be finear operators on V then prove that $(3+1) - 3 + 1$	-		000		
$PARI - B (5 \times 10 = 80 \text{ Warks})$					
Answer ALL Questions	8	к?	COI		
avery gram of this element on average amits 2.0 alpha particles per	0	112	001		
second then what is the probability that during the payt second the					
number of alpha particles emitted from 1 gram is (i) at most 6 (ii)					
at least 2					
i) If X is a normal variable with mean 30 and standard deviation of 5	8	K3	CO1		
Find (i) $P [27 < X < 35]$ (ii) $P [X > 45]$ Use normal distribution					
tables					
OR					
b) Find the correlation coefficient for the following heights of fathers	16	K2	<i>CO1</i>		
X, their sons Y and also find the equations of regression lines.					
		10	o o =		
KI – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create		- 12	905		

Х	65	66	67	67	68	69	70	72
Y	67	68	65	68	72	72	69	71

12. a) Mechanical engineers testing a new arc welding technique, classified ¹⁶ K2 CO2 welds both with respect to appearance and an X-ray inspection

the semi num respect to up	P m m c m		
X-ray/Appearance	Bad	Normal	Good
Bad	20	7	3
Normal	13	51	16
Good	7	12	21

Use ψ^2 -test for independence using 0.05 level of significance.

- b) i) In a sample of 1000 citizens of India, 540 are wheat eaters and the 8 K2 CO2 rest are rice eaters. Can we assume that both rice and wheat equally popular in India at 1 % level of significance?
 - ii) Two independent samples of sizes 8 and 7 contained the following 8 K2 CO2 values. Test if the two populations have the same variance.

Sample I	19	17	15	21	16	18	16	14
Sample II	15	14	15	19	15	18	16	

13. a) Let V be the set of all polynomials of degree less than or equal to n 16 K3 CO3 with real coefficients. Show that V is a vector space over R with respect to polynomial addition and usual multiplication of real numbers with a polynomial

UR		
b) i) Decide whether or not the set	8	K3 CO3
$S = \{x^3 + 3x - 2, 2x^2 + 5x - 3, -x^2 - 4x + 4\}$ is a basis for $P_2(R)$		
ii) Show that the union of two subspaces W_1 and W_2 is a subspace if	8	K3 CO3
and only if one is contained in the other.		

- 14. a) Let $A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$ Find all Eigen values of A and Eigen vectors also Find an invertible matrix P such that P⁻¹AP is diagonal.
 - OR
 - b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by T(x, y, z) = 16 K2 CO4 (x + 2y - z, y + z, x + y - 2z). Evaluate a basis and dimension of null space N(T) and range space R(T) and range space R(T). Also verify dimension theorem
- 15. a) i) State and prove Cauchy-Schwarz inequality and Triangle inequality 8 K3 CO5 in an inner product space.
 - ii) Let u = (2, 1+i, i), v = (2-i, 2, 1+2i) be vectors in $C^3(C)$. 8 K3 CO5 Compute using the standard inner product $\langle u, v \rangle$, ||u||, ||v|| and ||u+v||.

OR b) Let P₂ be a family of polynomials of degree two atmost. Define an 16 K3 CO5 inner product on P₂ as $\langle f(x), g(x) \rangle = \int_0^1 f(x)g(x)dx$. Let {1,x, x^2 } be a basis of the inner product space P₂. Find out an orthonormal basis from this basis.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12905