		Reg. N	0.												
	Question Pape	er Code		13	169										
	B.E. / B.Tech DEGREI	E EXAM	INAT	OI	NS,	NO	V/1	DEC	C 202	24					
		Third Ser	nester												
	Computer S	Science a	nd En	igin	eer	ing									
	(Common to Information Tech	nology a	nd M.'	Tec	h C	SE (5 yrs	Int	egrat	ed))				
	20BSMA304 - S	tatistics a	and L	ine	ar A	Alge	bra								
	Re	gulation	- 2020)											
	(Use of stat	tistical tal	ole is p	perr	nitte	ed)									
	Duration: 3 Hours								Ma	x. N	Aark	s:	100		
	PART - A (MC	Q) (20 ×	1 = 20) M	ark	s)					м	anko	<i>K</i> –	co	,
	Answer	ALL Que	estion	s							IVI.	arks	Level		
1.	The intelligence quotients (IQ's) of 10 bo	oys in a cl an I O is	lass ai	re g	iver	ı bel	ow:	70,	120,	11(0,	Ι	K2	CO	1
	(a) 97.2 (b) 97	(c) 97.6	,)	((1) 90	6.65									
2.	The first four central moments of a di	istributior	n are	0,	ź.5,	0.7	ano	1	8.75.	Th	ne	1	K2	CO	1
	Skewness of the distribution is			,	1) 0	0.01	_								
2	(a) 0135 (b) 0.001 A hey contains 8 Ped 2 White and 0 Phy	(c) 0.03	6] F 2 hai) 11	1) ().	100.	5 mat		dam	tha		1	K?	co	1
5.	the probability that all the 3 are red and 1 d	of each co	olor is	dra	wn	is	n ai	Tan	uom,	the	-11	1	112	00	1
	(a) 97.2 (b) 97	(c) 97.6)	(0	1) 90	6.65									
4.	On an average typist makes 2 mistakes per	r page, the	e prob	abi	lity	that	shev	will	mak	e		1	K2	CO	1
	exactly 3 or more errors on a page is	()		(1) 0	222	2								
5	(a) 0.3278 (b) 0.1514	(c) 0.32	233	(0	1) U. 2	.333	3 2		20			1	K2	CO.	2
5.	Which test statistic is used to test the hypo	othesis H	$_{\scriptscriptstyle 0}$: σ	= 0	, ,	H_1 :	σ⁻ ₹	σ_0	?						
	(a) F-test (b) t-test	(c) z-te	st	(0	ג (t	tes	st								
6.	The standard error of the different	nce bet	ween	th	ne	two	pr	opo	rtion	S :	if	1	K2	CO.	2
	$\overline{p_1} = 0.10, \overline{p_2} = 0.133, n_1 = 50 \text{ and } n_2 = 75$	⁵ is													
	(a) 0.0547 (b) 0.0258	(c) 0.00)14	(0	1) O.	.234	5								
7.	A random sample of 625 students from a	a normal	popu	lati	on c	of u	nkno	wn	mea	n ha	as	1	K2	CO.	2
	mean 10 and S.D 1.5. Test statistic value is (a) 16.08 (b) 14.5	s (a) 16 6	-	(J) 1/	5 12									
8.	What test will be used to test the variances	s between	, two s	u am	nles	5.45 ?						1	Kl	CO.	2
0.	(a) t-test (b) χ^2 test	(c) F-te	st	((d) z-	-test									
9.	Which of the following set is the span of λ	R^3 .			,							1	K1	CO.	3
	(a) $\{(0,0,0), (1,1,1), (1,0,0)\}$	(b) {(1,0,0),	, (1,	,1,1)), (0,	1,0)]	}							
10	(c) $\{(1,0,0), (1,1,1), (0,0,1)\}$	(d) {(1,0,0),	, (0,	,1,0)), (0,	0,1)	}				,	<i>V</i> 1	co	,
10.	Let $M_{m \times n}(F)$ be the vector space of m x n	n matrices	s over	a f	ield	F, t	hen t	he o	dime	nsio	n	1	K1	το.	3
	of $M_{m \times n}(F)$ is														
11	(a) n (b) m $\frac{1}{2}$	(c) mn		(0	d) m	l-n						1	K1	co	3
11.	(a) m (b) n	(a)		(4) 1							1	M	0.0	J
12.	The dimension of a vector space V is defin	ned as:		(L	1) 1							1	K1	CO.	3
-	(a) The number of vectors in V (a)	(b) The r	numbe	er o	f ele	emer	nts in	a b	asis	for V	V				
	(c) The total number of subspaces of V	(d) The m	nagnit	ude	oft	the l	arges	st ve	ector	in V	V				

- 13. Let V and W be vector spaces and T:V \rightarrow W be linear. If V is finite dimensional, then1K1CO4(a) Nullity(T) + rank(T) = dim(V)(b) Nullity(T) rank(T) = dim(V)(c) Nullity(T) = rank(T)(d) rank(T) = dim(V)
- 14. Let T: $\mathbb{R}^3 \to \mathbb{R}^2$ be defined by T(a₁, a₂, a₃) = (a₁ a₂, 2a₃). The matrix of l K2 CO4 transformation with respect to the standard bases of \mathbb{R}^3 and \mathbb{R}^2 is
 - (a) $\begin{bmatrix} T \end{bmatrix}_{B}^{r} = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} T \end{bmatrix}_{B}^{r} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} T \end{bmatrix}_{B}^{r} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} T \end{bmatrix}_{B}^{r} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- 15. Let β and γ be the standard ordered bases for R² and R³ respectively. Let T:R² \rightarrow R³ $l \quad K^2 \quad CO4$ defined by T(a₁, a₂)= (2a₁ a₂, 3a₁ + 4a₂, a₁), the value of $[T]^{\gamma}_{\beta}$ is

(a)
$$\begin{bmatrix} T \end{bmatrix}_{\beta} = \begin{bmatrix} 2 & -1 \\ 1 & 4 \\ 1 & 0 \end{bmatrix}$$

(b) $\begin{bmatrix} T \end{bmatrix}_{\beta} = \begin{bmatrix} 2 & -1 \\ 3 & 4 \\ 1 & 0 \end{bmatrix}$
(c) $\begin{bmatrix} T \end{bmatrix}_{\beta} = \begin{bmatrix} 1 & -1 \\ 3 & 4 \\ 1 & 0 \end{bmatrix}$
(d) $\begin{bmatrix} T \end{bmatrix}_{\beta} = \begin{bmatrix} 2 & -1 \\ 3 & 4 \\ 1 & 1 \end{bmatrix}$

16. The trace and determinant of a 2 \times 2 matrix are known to be - 2 and - 35 respectively 1 K2 CO4 then the eigen values of the matrix is

- (a) -7, 5
 (b) -7, -5
 (c) 7, -5
 (d) 7, 5

 17. Cauchy-Schwarz Inequality is
 $l \quad Kl \quad CO5$

 (a) $|\langle x, y \rangle| > ||x|| . ||y||$ (b) $|\langle x, y \rangle| \le ||x|| . ||y||$
 - (c) $|\langle x, y \rangle| \neq ||x|| \cdot ||y||$ (d) $|\langle x, y \rangle| \le ||x|| + ||y||$

 18. If x = (5+i,4), and y = (8+i,7+i) then the value of ||x+y|| is
 1
 K2
 CO5

 (a) $\sqrt{295}$ (b) $\sqrt{259}$ (c) $\sqrt{592}$ (d) $\sqrt{285}$

19. Let V be IPS over field F, Then for any $u, v \in V$ and $\alpha, \beta \in F$, if ||cu|| = 1 K1 CO5 (a) ||u|| (b) c ||u|| (c) |c|||u|| (d) $\langle u, v \rangle = 0$ 20. Linear polynomial in square approximation is 1 K1 CO5

20. Linear polynomial in square approximation is
(a)
$$y = ct^3 + dt + e$$
 (b) $y = ct^2$ (c) $y = ct^2 + e$ (d) $y = dt + e$

PART - B $(10 \times 2 = 20 \text{ Marks})$

	Answer ALL Questions			
21.	Mention various types of skewness.	2	K1	<i>CO1</i>
22.	Define Poisson distribution.	2	K1	CO1
23.	Define Type I and Type II errors.	2	K2	<i>CO2</i>
24.	Given that n=22, sample mean=153.7, population mean=146.3 and S.D=17.2. Find the test statistics value.	2	K2	<i>CO2</i>
25.	State and prove that cancellation law for vector addition.	2	K2	CO3
26.	For R^3 , determine whether the first vector can be expressed as a linear combination of the other two vectors $(-2, 0, 3), (1, 3, 0), (2, 4, -1)$	2	K2	СО3
27.	Suppose that T: $\mathbb{R}^2 \rightarrow \mathbb{R}^2$ is linear, T(1,0) = (1,4), and T(1, 1) = (2,5). What is T(2,3)?	2	K2	<i>CO4</i>
28.	Compute the matrix of the transformation with respect to the standard basis $P_2(R)$.	2	K3	<i>CO4</i>
	Let T: $P_2(R) \rightarrow P_2(R)$ defined as $T(f(x)) = f(x) + xf'(x)$			
29.	State triangle inequality.	2	K1	CO5

PART - C $(6 \times 10 = 60 \text{ Marks})$

Answer ALL Questions

31. a) An experiment consists of throwing two six-sided dice and observing the -10 K3 CO1 number of spots on the upper faces. Determine the probability (i) The sum of the spots is 3. (ii) Each die shows four or more spots. (iii) The sum of the spots is not 3. (iv) Neither a one nor a six appear on each die. (v) A pair of sixes appear. (vi) The sum of the spots is 7.

OR

b) From the following data, find (i) The two regression equations (ii) The 10 K3 CO1 coefficient of correlation between the marks in mathematics and statistics (iii) The most likely marks in statistics when marks in mathematics are 30

Marks in Math's	25	28	35	32	31	36	29	38	34	32
Marks in Statistics	43	46	49	41	36	32	31	30	33	39

32. Two random samples give the following results. a)

Sample	Size	Sample mean	Sum of squares of deviation from				
			the mean				
1	10	15	90				
2	12	14	108				

Test whether the samples come from the same normal population.

From a poll of 800 television viewers, the following data have been accumulated ¹⁰ K3 CO2 b) as to, their levels of education and their preference of television stations. We are interested in determining if the selection of a TV station is independent of the level of education.

		Educational Level		
	High School	Bachelor	Graduate	Total
Public Broadcasting	50	150	80	280
Commercial Stations	150	250	120	520
Total	200	400	200	800

(i) State the null and the alternative hypotheses.

(ii) Show the contingency table of the expected frequencies.

(iii) Compute the test statistic.

(iv) The null hypothesis is to be tested at 95% confidence. Determine the Critical value for this test.

Show that $F^n = \{(a_1, a_2, a_3, \dots a_n): a_i \in F\}$ is a vector space over F with respect ¹⁰ K3 CO3 33. a) to addition and scalar multiplication defined component wise.

OR

- b) i) Determine whether $\{x^2 + 3x 2, 2x^2 + 5x 3, -x^2 4x 4\}$ forms a basis ⁵ K3 CO3 for $P_2(R)$.
- ii) Determine 'x' so that (1, -1, x 1), (2, x, -4), (0, x + 2, -8) in R³ are linearly 5 K3 CO3 dependent over R.

3

K3 CO2 10

K1 CO5

2

34. a) Let T:
$$P_2(R) \rightarrow P_3(R)$$
 defined by $T(f(x)) = f'(x) + \int_0^x 2f(t)dt$

Find the basis for N (T) and R (T) and hence verify the dimension theorem. Is T one-to-one? Is T onto? Justify your answer.

OR

b) For the linear operator T:
$$P_2(R) \rightarrow P_2(R)$$
 defined as $T(f(x)) = f(x) + (x+1)f'(x)$. ¹⁰ K3 CO4
Find the Eigen values of T and an ordered basis B for $P_2(R)$ such that matrix of
the given transformation with respect to the new resultant basis B is a diagonal
matrix.

35. a) Let u = (2, 1+i, i), v = (2-i, 2, 1+2i) be vectors in $C^{3}(C)$. Compute 10 K3 CO5 using the standard inner product $\langle u, v \rangle$, ||u||, ||v|| and ||u + v||.

OR

- b) Check that X=(1,1,1), Y=(-1,0,-1), Z=(-1,2,3) in R^3 linearly independent. Using gram-schmidt orthogonalization process computes an Orthogonal basis of R^3 .
- 36. a) i) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ is a linear transformation such that T(1,1) = (1,0,2), T(2,3) = 5 K3 CO4 (1,-1,4). Then find (a) T (b) T(2,5), T(8,11) (c) Rank T (d) Is T one-one or onto?
 - ii) Prove that $R^2(R)$ is an inner product space defined for $u = (a_1, a_2)$ and $v = (b_1, b_2)$ by $\langle u, v \rangle = a_1b_1 a_2b_1 a_1b_2 + 2a_2b_2$.

OR

- b) i) Suppose $T: \mathbb{R}^2 \to \mathbb{R}^2$ is linear, T(1,0) = (1,4), T(1,1) = (2,5). What is (2,3)? 5 K3 CO4 Is T one- to- one?
- ii) If u and v are any two vectors in an inner product space, then prove that $||u+v||^2 + ||u-v||^2 = 2(||u||^2 + ||v||^2).$ 5 K3 CO5