		Reg.	No.												
	Question Paper Co	de		13170											
	B.E. / B.Tech DEGREE EX	KAMI	NATI	ON	IS. 1	NOV	<u></u>)E	C 20)24					
	Third Semester														
	Computer Science	and I	Busine	ess	Sys	tem	S								
	20BSMA305 - COMPU	JTATI	ONA	LS	ТА	TIS	TIC	S							
	Regula	tions -	2020												
	(Use of Statistica	al Tabl	es is r	berr	nitte	ed)									
D	uration: 3 Hours		1			,					M	ax. I	Mar	ks:	100
2	PART - A (MCO)	(20 ×	1 = 20) M	ark	s)								ĸ	
	Answer AI	Answer ALL Questions							Marks Level CO						
1.	For a bivariate normal distribution, if X and	l Y ar	e ind	epe	nde	nt,	then	ı t	heir	co	rrela	tion	1	K	CO1
	coefficient ρ is						_								
2	(a) 1 (b) -1 (c) 0	• 1 1	1	(0	1) C	anno	ot be	e	leter	mir	ned	1	1	V	
2.	In a multivariate normal distribution with p v estimated for the covariance matrix	ariabl	es, ho	W	mar	ny p	barar	ne	ters	nee	ed to	be be	, 1	Λ2	
	(a) m (b) m^2 (c)	p(p+1)	1)			(p(a)	[p-	1)						
n	$\begin{array}{c} (a) \ p \\ (b) \ p \\ (c) \ p \\ (c) \ c \\$	$\frac{2}{1}$				1	u) —	2	.1		1.4.	1	1	V	
3.	If X and Y follow a bivariate normal distribution expectation $F(Y Y = x)$ is:	n with	mean	sμ	x an	$a \mu$	y, th	ner	the	coi	nditi	onal	1	K	001
	(a) A constant		(b)	Α	line	ar fi	incti	ior	of ·	r					
	(c) A quadratic function of x		(d)	A	n ex	pon	entia	al f	unc	ion	of x				
4.	The maximum likelihood estimator of the mean	vector	μin a	a m	ulti	varia	ate n	or	mal	dis	tribu	tion	1	K	CO1
	is:														
	(a) The sample median		(b)) Th	ne sa	mp	le m	od	e						
5	(c) The sample mean vector In linear regression model $V = \theta_1 + \theta_2 + \theta_3$		(d)) Th	ie fr	rst o	bser	:Va	tion	for of			1	K	CO^{2}
5.	In linear regression model $I = p_0 + p_1 z_1 + p_2 z_2$ (a) The sample size	$2 + \cdots$	$+p_r^2$	r + Fri	ror	wna	1 000	es	e re	er?			1	n.	002
	(c) Regression Coefficient		(d)	Me	ean										
6.	Which statistic is commonly used to detect multi-	-collin	earity	ina	a reg	gres	sion	m	odel	?			1	K	CO2
	(a) Durbin-Watson statistic		(b)	Va	rian	ce Iı	nflat	io	n Fa	ctor	(VI	F)			
7	(c) Cook's Distance	0 171	(d)	Jaro	que	Ber	a sta	tis	stic				1	V	
1.	For multiple regression model SS1=200, SSE=50	J. The	multij	ple	coe	tfici	ent o	Dİ	dete	rmı	natic	n is	1	Λ2	: 02
	(a) 0.25 (b) 4.00 (c	c) 0.75					6	d)	0.92						
8.	A measure of goodness of fit for the estimated re	gressio	on equ	atio	on is	s the	• `)					1	K	CO2
	(a) multiple coefficient of determination	-	(b) 1	nea	ın so	luar	e du	e t	o er	ror					
0	(c) mean square due to regression		(d) p	o-va	lue								,	V	
9.	What is the multivariate test statistic for MANOV	VA?	alla T		-	(J)]	Dard	~ 1		a a t	Deed		Ι	K	<i>CO3</i>
10	In a Multivariate Analysis of Variance (MANOV	(C) PIII (A) w	hat do	race es f	t he t	(u) I est :	KOY asses	5 I 297	Jarg	est	KOOI		1	K	CO3
10.	(a) Differences in variances among multiple grou	ips	nut uo	00 0		0500		55.							
	(b) Differences in the mean vectors of several gro	oups													
	(c) The relationship between two categorical vari	ables													
11	(d) Differences in single-variable means	<i>(</i>) [,]	7 \										1	ν	
11.	The apparent error rate for the confusion matrix	$\begin{pmatrix} 3 \\ 2 \end{pmatrix}$	$\binom{2}{3}$ for	the	e po	pula	ntion	π	1 an	d π	2 wi	th 5	1	K2	: 103
	samples each is	` <u></u>	^ر												
	(a) 0.5 (b) 0.4	(c) ().2				(d)	0.	6						

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

12.	Which of the following is not the part of the exploratory factor analysis process?	1	K1	CO3
	(a) Extracting factors			
	(b) Determining the number of factors before the analysis (c) Rotating the factors			
	(d) Refining and Interpreting the factors			
13.	Which of the following are recommended applications of PCA?	1	K1	<i>CO4</i>
	(a) Data Visualisation (b) As a replacement for linear regression			
	(c) Data compression (d) None of the above			
14.	What do factor scores help identify in factor analysis?	1	K1	<i>CO</i> 4
	(a) Outliers in the dataset (b) The significance of each variable			
	(c) The relationship between factors (d) The total sample variance explained			
15.	What is the importance of the cumulative explained variance plot in PCA?	1	K1	<i>CO4</i>
	(a) It shows the distribution of eigenvalues in the dataset			
	(b) It indicates a sudden drop in variance explained			
	(c) It helps identify the optimal number of principal components			
16	(d) It calculates the maximum eigen value for retention What is a latent variable?	1	K1	CO4
10.	(a) It is a variable that cannot be measured directly	1		007
	(a) It is a variable that cannot be measured uncerty. (b) It is another name for a factor			
	(c) Latent variables represent clusters of variables that correlate highly with each other.			
	(d) All of these are correct.			
17.	Which clustering algorithm is based on the concept of centroids?	1	K1	<i>CO5</i>
	(a) K-Means (b) DBSCAN (c) Agglomerative (d) Mean-Shift			
18.	Which clustering algorithm is based on the concept of minimizing the within-cluster variance?	1	K1	<i>CO5</i>
	(a) K-Means (b) DBSCAN (c) Agglomerative (d) Mean-Shift			~ ~ -
19.	What is needed for k-means clustering?	1	Kl	<i>CO5</i>
	(a) Defined distance metric (b) Number of clusters			
20	(c) Initial guess to cluster centroids (d) All of these	1	K1	<i>C</i> 05
20.	(a) Classification (b) Regression	1	ΛI	COJ
	(a) Classification (b) Regression (c) Dimensionality reduction (d) Grouping similar data points together			
	(d) Grouping similar data points together			
	PART - B (10 × 2 = 20 Marks)			
	Answer ALL Questions			
21.	Find the distribution of X_2 given $X_1 = x_1$ and $X_3 = x_3$, when $\mu = (-3, 1, 4)$ and	2	K1	<i>CO1</i>
	$ \begin{bmatrix} 5 & -2 & 0 \\ -2 & -2 & 0 \end{bmatrix} $			
	$\Sigma = \begin{pmatrix} -2 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$			
22	10027 A bivariate normal distribution has the following parameter	2	K2	C01
22.	$\mu = 2$ $\mu = 3$ $\sigma = 2$ $\sigma = 3$ $\rho = 0.5$			
	Find $F[Y X = 4]$ and $Var[Y X = 4]$			
23	Write the null and alternative hypotheses for the Durbin-Watson test	2	K1	<i>CO2</i>
23. 24	What is multi-collinearity? How does it affect regression estimates?	2	K2	CO2
24. 25	What is indifferent events in the variables $n = 2$ and completion $a > 2$ in MANOVA2	2	K1	<i>C</i> 03
25.	what is the test statistic for the variables $p = 2$ and population $g \ge 2$ in MANOVA?	2	vr	cor
26.	The density function associated with populations π_1 and π_2 are given by $f_1(x_0) = 0.6$ and	2	Λ2	COS
	$f_2(x_0) = 0.4$ with probabilities $p_1 = 0.3$ and $p_1 = 0.7$. The cost of miss classification is given			
	as $C(1/2) = 4$, $C(2/1) = 9$. How will you classify the new observation?			
27.	What is the formula for proportion of total population variance due to k^{th} principle	2	K2	<i>CO4</i>
•	component?	2	W2	604
28.	Convert the covariance matrix $\Sigma = \begin{pmatrix} 1 & 16 \\ 16 & 227 \end{pmatrix}$ to correlation matrix.	2	K2	<i>CO</i> 4
29	Define Cluster Analysis.	2	K2	<i>CO5</i>
30	Define k-mean clustering	2	K1	CO5
50.	2 enne a mean enseening.			-
Kl	- Remember; $K2$ - Understand; $K3$ - Apply; $K4$ - Analyze; $K5$ - Evaluate; $K6$ - Create	1	131	70
	2			

PART - C $(6 \times 10 = 60 \text{ Marks})$

Answer ALL Questions

- Find the maximum likelihood estimates of 2×1 mean vector μ and 2×2 covariance ¹⁰ K² CO1 31. a) matrix Σ based on the random sample $X = \begin{pmatrix} 3 & 6 \\ 4 & 4 \\ 5 & 7 \\ 7 & 7 \end{pmatrix}$ from a bivariate normal population.
 - 10 K3 CO1 b) Let $X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ be a normal random vector with the following mean vector and covariance matrix $\mu = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $\operatorname{Cov} = \begin{pmatrix} 4 & 1 \\ 1 & 1 \end{pmatrix}$. Let also $A = \begin{pmatrix} 2 & 1 \\ -1 & 1 \\ 1 & 3 \end{pmatrix}$, $b = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$, $Y = \begin{pmatrix} Y_1 \\ Y_2 \\ Y_2 \end{pmatrix} = AX + b$
 - (a) Find $P(X_2 > 0)$
 - (b) Find the expected value vector of Y, $\mu_v = E_v$
 - (c) Find the covariance matrix of Y
 - (d) Find $P(Y_2 \le 2)$

32. a) Fit a Multivariate Straight line regression model for the following data

	<i>z</i> ₁	0	1	2	3	4				
	<i>y</i> ₁	1	4	3	8	9				
	<i>y</i> ₂	-1	-1	2	3	2				
			OR	2			-			
oles take	the va	alue Y	$Y = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	0 1 2 1 1 1	$\begin{pmatrix} 100 \\ 10 \\ 105 \end{pmatrix}$	and	the design matrix	10	К3	CO2

b)

If the response variab

- $X = \begin{pmatrix} 1 & 9 & 62 \\ 1 & 8 & 58 \\ 1 & 7 & 64 \end{pmatrix}$ takes the value. Calculate \hat{B} Calculate $\hat{\varepsilon}$ Fit a linear regression model.
- 33. a) Find the Fisher's discriminant for the following :

$$X_{1} = \begin{pmatrix} -2 & 5\\ 0 & 3\\ -1 & 1 \end{pmatrix}, \quad X_{2} = \begin{pmatrix} 0 & 6\\ 2 & 4\\ 1 & 2 \end{pmatrix}, \quad X_{3} = \begin{pmatrix} 1 & -2\\ 0 & 0\\ -1 & -4 \end{pmatrix}$$
OR

b) Construct a MANOVA table for the following

 $\begin{pmatrix} \binom{1}{3} & \binom{2}{2} & \binom{7}{7} \\ \binom{0}{4} & \binom{2}{0} & \\ \binom{2}{2} & \binom{1}{2} & \binom{2}{2} \end{pmatrix}$

34. a) Let $\sum = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}$ determine the principal components Y_1, Y_2, Y_3 . 10 K3 CO4

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

10 K2 CO3

10 K2 CO3

10 K3 CO2

13170

b) Let $\rho = \begin{bmatrix} 1 & 0.63 & 0.45 \\ 0.63 & 1 & 0.35 \\ 0.45 & 0.35 & 1 \end{bmatrix}$ be the covariance matrix. Assuming an m = 1 factor

model find the loading matrix L.

35. a) Construct the Principle components $Y_1, Y_2 \& Y_3$ for the covariance $matrix \sum = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. Also find $Var(Y_1)$, $Cov(Y_1, Y_2) \&$ show that $\sum_{i=1}^3 \sigma_{ii} = \sum_{i=1}^3 \lambda_i$

OR

b) Suppose we measure two variables X_1 and X_2 for four items A,B,C and D. The data are 10 K3 CO5 as follows:

	Observations						
Item	<i>X</i> ₁	<i>X</i> ₂					
A	5	4					
В	1	-2					
С	-1	1					
D	3	1					

Use K-means clustering technique to divide the items in to K=2 clusters. Start with the initial groups (AB) and (CD).

36. a)
If
$$X \sim N_3(\mu, \Sigma)$$
, $\mu = \begin{pmatrix} 5\\3\\7 \end{pmatrix}$ and $\Sigma = \begin{pmatrix} 4 & -1 & 0\\-1 & 4 & 2\\0 & 2 & 9 \end{pmatrix}$, then find
(i) $P(X_1 > 6)$
(ii) $P(5X_2 + 4X_3 > 70)$
(iii) $P(4X_1 - 3X_2 + 5X_3 < 80)$.
OR
b)
Suppose $R = \begin{pmatrix} 1 & 0.632 & 0.511 & 0.511 & 0.155\\0.632 & 1 & 0.574 & 0.322 & 0.213\\0.511 & 0.574 & 1 & 0.183 & 0.146\\0.115 & 0.322 & 0.183 & 1 & 0.683\\0.155 & 0.213 & 0.146 & 0.683 & 1 \end{pmatrix}$ be the correlation matrix. The
eigenvalues more than unity are 2.437 and 1.407.
 $F_1 = (0.732 & 0.831 & 0.726 & 0.605 & 0.563)^T$
 $F_2 = (-0.437 - 0.280 - 0.374 & 0.694 & 0.719)^T$ are the loading factors. Find the residual matrix.