	-											
		Reg. No.										
	Question Pa	per Code		1284	1							
B.E. / B.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024												
Third Semester												
Comp	iter Science a	and Engin	eering	(Cyl	ber S	Seci	irity	y)				
•	20BSMA3	0	0				v					
	R	egulations	- 2020									
Duration: 3 Hours		C						Max	. M	arks	: 10	0
PART - A $(10 \times 2 = 20 \text{ Marks})$									K –	60		
Answer ALL Questions						Marks						
1. Express $(10110)_2$ in base 10 and express $(1076)_{10}$ in base two.						2		<i>CO1</i>				
2. Find the six consecutive integers that are composite.						2		<i>CO1</i>				
3. Determine whether the congruence $8x \equiv 10 \pmod{6}$ is solvable.						2		<i>CO2</i>				
4. How many solutions a			+15≡	≑0(π	nod!	5)?				2		<i>CO2</i>
5. What are quadratic residues? Give examples.						2		CO3				
6. Define the Jacobi symbol.						2		CO3				
7. Discuss whether $6x +$										2		CO4
8. Express 169 as the sum of four squares.						2		CO4				
9. Show that 11 is self-invertible.							2		CO5			
10. Find \emptyset (11) and \emptyset (18).							2	K2	CO5			
		$B(5 \times 16 =$)							
Answer ALL Questions 11. a) State and prove Fundamental Theorem of Arithmetic.					16	K2	COI					
OR												
b) i) Prove that there are infinitely many primes.						8	K2	CO1				
ii) Use Euclidean a the GCD as a lin	-					6). A	lso	expr	ess	8	K2	CO1
12. a) i) Find the roots of the congruence $x^2 \equiv 43 \pmod{97}$.								8	K3	<i>CO2</i>		
ii) Reduce the congruence $4x^2 + 2x + 1 \equiv 0 \pmod{p}$ to the form							orm	8	K3	<i>CO2</i>		
$x^2 \equiv a \pmod{p}.$												
		OR										
b) i) Solve $x^2 + x + 7 \pmod{81}$.						8	K3	<i>CO2</i>				
ii) Prove that the c solutions.	ongruence f	$(x) \equiv 0 (\text{mo})$	dp) of	deg	ree 1	n ha	ıs at	mos	st n	8	К3	<i>CO2</i>
K1 – Remember; K2 – Unders	tand; K3 – Appl	y; K4 – Analy	vze; K5	– Eva	luate,	; K6	– Cr	eate			128	841

13. a) i) Determine whether 7411 is a residue modulo the prime 9283.	8	K3	CO3						
ii) List the quadratic residues of each of the primes 7, 13, 17, 29.	8	K3	CO3						
OR									
b) i) Evaluate: $\left(\frac{-28}{12}\right)$, $\left(\frac{51}{12}\right)$, $\left(\frac{71}{12}\right)$			СО3						
b) i) Evaluate: $\left(\frac{-23}{83}\right), \left(\frac{51}{71}\right), \left(\frac{71}{73}\right)$ ii) Prove that $\left(\frac{\alpha}{p}\right) \equiv \alpha^{\frac{p-1}{2}} \mod dp$	8	K3	<i>CO3</i>						
 14. a) Prove that a positive integer n is properly representable as a sum of two squares if and only if the prime factors of n are all of the form 4k + 1, except for the prime 2, which may occur to at most the first power. OR 	16	K4	CO4						
b) State and prove Chinese remainder theorem.	16	K3	<i>CO</i> 4						
 15. a) i) Evaluate τ (n) and σ (n) for each n = 43, 1560,44982 and 496 ii) Find the remainder when 15¹⁹⁷⁶ is divided by 23. 	8 8		CO5 CO5						
b) i) Let $n = p_1 e_1 p_2 e_2 \dots p_k e_k$ be the canonical decomposition of a positive integer n. Then Prove that	8	K4	CO5						

$$\emptyset(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right), \dots, \left(1 - \frac{1}{p_k}\right)$$

ii) State and prove Wilson's Theorem.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

8 K4 CO5