	Reg. No	•							
	Question Paper Code	12	413						
	B.E. / B.Tech DEGREE EXAMINAT	'IOI	NS,	NOV	/ D]	EC 20	023		
	Fourth Semeste	r							
	Electronics and Communication	n E	ngi	neeri	ng				
	(Common to Computer and Commun	icat	ion	Engin	eerii	ng)			
2	20BSMA401 - PROBABILITY THEORY ANI) SI	.'OC		TIC	PRC	DCESS	SES	
	(Statistical Table may be j (Deculations 2020	orov	'ideo	1)					
Dur	(Regulations 2020)				Max	Mar	kei 100	
Dui	PART - A $(10 \times 2 = 20)$	Mai	rks)			IVIAA	. Iviai	x3. 100	
	Answer ALL Questi	ons	,						
								Marks K-Level	, CO
1.	If X and Y are two independent random varial	oles	wit	h var	ianco	es 2 a	and 3	2,K1,CC	20 71
_	respectively. Find the variance of $3X + 4Y$.							a 1/a (1/	~ 1
2.	Check whether $f(x) = \frac{1}{1+x^2}$, $-\infty < x < \infty$ is a	prol	babi	ility d	ensit	ty fun	ction	2,K2,CC	Л
2	or not.					(V	V)	2 K1 CO	7 2
3.	Ine joint pdf of the random $(k(r+v) \ 0 \le r \le 2: 0 \le v \le 2)$		vai	riable		(А,	Y)	2,81,00	12
	is $f(x, y) = \begin{cases} n(x + y), 0 \le x \le 2, 0 \le y \le 2 \\ 0, \text{ otherwise} \end{cases}$.								
	Find the value of k.								~ •
4.	Define Regression.							2,K1,CC)2
5.	Define a wide sense stationary process.							2,K1,CC)3
6. -	Write any two properties of autocorrelation.							2,K1,CC	3
7.	State any two properties of a Poisson process.							2,K1,CC)4 24
8.	Let $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ be a stochastic matrix. Check whe	the	r it i	s regu	lar.			2,K2,CC)4
0	$\begin{bmatrix} \overline{2} & \overline{2} \end{bmatrix}$			U				2 K1 CO	25
9. 10	Define Memory less system. Charle whether the system $y(t) = t y(t)$ is linear							2,K1,CC)))5
10.	Check whether the system $y(t) = t x(t)$ is line	1 Γ.						2,112,00	//
	PART - B $(5 \times 16 = 80)$	Mai	rks)						
	Answer ALL Questions								
11.	a) A random variable X has the following probability distribution. $16, K3, CO1$								01
	X 0 1 2 3 4 5		6	7]			

	X	0	1	2	3	4	5	6	7
	P (x)	0	K	2 <i>K</i>	2 <i>K</i>	3 <i>K</i>	K^2	$2K^2$	$7K^2 + K$
r									

Find

(i) The value of K.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12413

(ii) P(1.5 < X < 4.5 / X > 2) and

(iii) The smallest value of 'n' for which $P(X \le n) > \frac{1}{2}$.

OR

- b) (i) Out of 800 families with 4 children each. 10,K3,CO1
 (a) How many families would be expected to have 2 boys & 2 girls?
 (b) At least one boy (c) at most 2 girls (d) children of both genders
 - (ii) State and prove Memoryless property of Exponential distribution. 6,K3,CO1
- 12. a) The joint probability mass function of (X, Y) is given by $P(x, y) = {}^{16,K3,CO2}$ k(2x + 3y), x = 0,1,2; y = 1,2,3. Find all the marginal and conditional probability distributions. Also, find the probability distribution of (X + Y) and also find P (X + Y > 3).

OR

- b) The joint probability density function is given by $f(x, y) = {}^{16,K3,CO2} \frac{1}{3}(x+y), 0 \le x \le 1, 0 \le y \le 2$. Find the correlation coefficient of X and Y.
- 13. a) The process $\{X(t)\}$ whose probability distribution under certain ^{16,K3,CO3} condition is given by

$$P\{X(t) = n\} = \begin{cases} \frac{(at)^{n-1}}{(1+at)^{n+1}}, & n = 1,2 \dots \\ \frac{at}{1+at}, & n = 0 \end{cases}$$
. Find the mean and variance

of the process. Is the process first-order stationary?

OR

b) (i) Examine whether the random process $\{X(t)\} = A\cos(\omega t + \theta)$ is a ^{8,K3,CO3} wide sense stationary if A and ω are constants and θ is uniformly distributed random variable in $(0,2\pi)$.

(ii) The autocorrelation function of a stationary random process 8,K3,CO3 is $R(\tau) = 16 + \frac{9}{1+16\tau^2}$. Find the mean and variance of the process.

14. a) (i) Prove that the sum of two independent Poisson processes is a ^{8,K3,CO4} Poisson process.

(ii) A housewife buys 3 kinds of cereals A, B and C. She never buys ^{8,K3,CO4} the same cereal in successive weeks. If she buys cereal A, the next week she buys cereal B. However, if she buys B and C, the next week she is 3 times as likely to buy A as the other cereal. In the long run how often, she buys each of the 3 cereals?

OR

b) A man either drives a car or catches a train to go to office each day. He ^{16,K3,CO4} never goes 2 days in a row by train but if he drives one day, then the next day he is just as likely to drive again as he is travel by train. Now suppose that on the first day of the week, the man tossed a fair die and drove to work if and only if 6 appeared. Find (i) the probability that he

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12413

takes a train on the third day and (ii) the probability that he drives to work in the long run.

15. a) A random process X(t) with $R_{XX}(\tau) = e^{-2|\tau|}$ is the output to a linear ^{16,K3,CO5} system whose impulse response is $h(t) = 2e^{-t}$,

 $t \ge 0$. Find (i) Cross correlation $R_{XY}(\tau)$

(ii) Cross spectral density $S_{XY}(\omega)$

(iii) Power spectral density $S_{XX}(\omega)$ between the input process X(t) and the output process Y(t).

OR

b) Wide sense stationary process X(t) is the input to a linear system with ^{16,K3,CO5} impulse response $h(t) = 2e^{-7t}, t \ge 0$. If the autocorrelation function of X(t) is $R_{XX}(\tau) = e^{-4|\tau|}$, find the power spectral density of the output process Y(t).