	Reg. No.									
	Question Paper Code12968									
	B.E. / B.Tech DEGREE EXAMINATIONS, NOV / DEC 2024									
Fourth Semester										
	Electronics and Communication Engineering									
	20BSMA401 - PROBABILITY THEORY AND STOCHASTIC PROCESSES	5								
	Regulations - 2020									
	(Use of Statistical Tables is permitted)									
Du	(Use of Statistical Tables is permitted)	Mar	ka. 11	00						
Du	$PART - A (MCO) (20 \times 1 = 20 Marks)$	· Iviai	KS. IV K	50						
	Answer ALL Questions	Marks	Level	СО						
1.	$\sum_{i=1}^{n} P(x_i)$ is equal to	1	K1	<i>CO1</i>						
	(a) 0 (b) 1 (c) -1 (d) ∞									
2.	Var(5x+2) is	1	K1	<i>CO1</i>						
_	(a) $25 var(x)$ (b) $5 var(x)$ (c) $2 var(x)$ (d) 25									
3.	In a binomial distribution, mean is 4 and the variance 3 then the value of p is $(2)^{2}$	Ι	KI	COI						
4	(a) $3/4$ (b) $1/4$ (c) $4/3$ (d) $2/3$	1	K?	CO1						
4.	A continuous random variable x follows the rule $f(x) = Ax^2, 0 < x$ 1. Determine A?	1	Π2	COI						
5	(a) I (b) Z (c) S (d) U Given a joint probability density function $f(r, y)$ of continuous variables then the	1	K1	CO2						
5.	marginal density $f_{\mu}(x)$ is given by									
	(a) $f_{\mathbf{x}}(x) = \sum f(x, y)$ (b) $f_{\mathbf{x}}(x) = \int f(x, y) dy$ (c) $f_{\mathbf{x}}(x) = \int f(y, x) dx$ (d) 0									
6.	If X and Y are two independent random variables then $Cov(X, Y) =$	1	K1	<i>CO2</i>						
	(a) 0 (b) 1 (c) -1 (d) ∞									
7.	If $r_{xy} = 0$ the variables X and Y are	1	K1	<i>CO2</i>						
	(a) linearly related (b) not linearly related (c) independent (d) none of the above									
8.	Two random variables X and Y have a covariance of 6. If the variance of Y is 9, and the	1	K2	CO2						
	correlation coefficient between X and Y is 0.5, find the variance of X.									
0	(a) 16 (b) 15 (c) 10 (d) 12	1	K I	<i>CO</i> 3						
9.	A random process is defined as:	1	ΚI	COS						
	(b) A collection of random variables indexed by time or space									
	(c) A process that generates random samples									
	(d) A set of random numbers									
10.	The auto-correlation function $R_{XX}(\tau)$ for a random process $\{X(t)\}$ is defined as:	1	K1	СОЗ						
	(a) $R_{XX}(\tau) = E[X(t)]$ (b) $R_{XX}(\tau) = E[X(t)X(t+\tau)]$									
	(c) $R_{XX}(\tau) = E[X(t+\tau) - X(t)]$ (d) $R_{XX}(\tau) = Var[X(t)]$		17.1	<i>co</i> 1						
11.	Auto-correlation $R_{XX}(\tau)$ is an function	Ι	KI	<i>CO3</i>						
12	(a) odd (b) even (c) either odd or even (d) None of the above	1	K1	<i>CO</i> 3						
12.	The mean square value of the process $E(X^2(t))$ is equal to	1	111	005						
13	(a) - ∞ (b) $R_{XX}(0)$ (c) $R_{XY}(0)$ (d) ∞ Poisson process is a random process	1	K1	CO4						
15.	(a) Discrete (b) Continuous (c) Stationary (d) Non-negative			007						
14.	A Markov chain is a Markov process with	1	K1	<i>CO4</i>						
	(a) continuous time and discrete state space. (b) discrete time and discrete state space.									
	(c) discrete time and continuous state space. (d) continuous time and continuous state									
	space.									

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

- 15. A state is ______ if, when we leave this state, there is a non-zero probability that we will 1 K1 CO4 never return to it.
 (a) irreducible
 (b) solvable
 (c) recurrent
 (d) transient
- 16. If the number of occurrences of an event A in an interval of length t is a Poisson process 1 K1 CO4 X(t) with parameter λ and if each occurrence of A has a constant probability p of being recorded and the recordings are independent of each other, then show that the number N(t) of the recorded occurrences in t is also a Poisson process with parameter -------(a) np (b) λ (c) λp (d) pq
- 17. Which of the following is true for a linear system? (a) $f[a_1 X_1(t) \pm a_2 X_2(t)] = a_1 f[X_1(t)] \pm a_2 f[X_2(t)]$ (b) $f[a_1 X_1(t) a_2 X_2(t)] = a_1 f[X_1(t)] a_2 f[X_2(t)]$ (c) $f[a_1 X_1(t) \pm a_2 X_2(t)] = f[a_1 X_1(t)] \pm f[a_2 X_2(t)]$ (d) None of the above
- 18. If $Y(t_1)$ depends only on the value of $X(t_1)$ and not on the past or future values of X(t), I = KI = CO5 then the system is
 - (a) linear time invariant (b) casual (c) memoryless (d) constant
- 19. A linear time-invariant system y(t) = f(x(t)) is said to be -----, if its response to any $1 K_1 COS$ bounded input is bounded.
 - (a) Stable (b) Unstable (c) Bounded (d) Unbounded

20. The power spectral densities of the input and output processes in the system connected by I = KI = COS(a) $R_{XX}(\tau) = R_{XX}(\tau) * h(\tau)$ (b) $R_{XX}(\tau) = R_{YX}(\tau) * h(\tau)$ (c) $R_{XY}(\tau) = R_{XX}(\tau) * h(-\tau)$ (d) $S_{YY}(w) = S_{XX}(w) * |H(w)|^2$

PART - B (10 \times 2 = 20 Marks) Answer ALL Questions

21.	. If the density function of a continuous random variable X is given by				
	$ \begin{pmatrix} ax, 0 \le x \le 1 \\ a, 1 \le x \le 2 \\ a \le x \le 1 \end{pmatrix} $				
	$f(x) = \begin{cases} a, 1 \le x \le 2 \\ 3a - ax, 2 \le x \le 3 \end{cases}$ Find <i>a</i> .				
	0, otherwise				
22.	The mean and variance of binomial distribution are 5 and 4. Determine the probability	2	K2	<i>CO1</i>	
	distribution.				
23.	The joint probability mass function of a two-dimensional random variable (X, Y) is given	2	K2	<i>CO2</i>	
	by				
	P(x, y) = K(2x + 3y), x = 1, 2; y = 1, 2. Find the value of K.				
24.	Write regression equation of X on Y, and Y on X.	2	Kl	CO2	
25.	Define random process.	2	K1	CO3	
26.	Find the variance of the stationary process $\{X(t)\}$ whose auto correlation function is	2	K2	CO3	
	given by $R_{XX}(\tau) = 2 + 4e^{-2 \tau }$.				
27.	Define Gaussian process.	2	K1	<i>CO4</i>	
28.	State any two properties of a Poisson process.	2	<i>K1</i>	<i>CO4</i>	
29.	Define memoryless system.	2	K1	<i>CO5</i>	
30.	If the system has the impulse response	2	K2	CO5	
	$\left(\frac{1}{2} t \le c\right)$				

$$h(t) = \begin{cases} \frac{1}{2c} , |t| \le c \\ 0, \quad |t| > c \end{cases}$$

Write down the relation between the spectrums of input X(t) and output Y(t).

K1 CO5

PART - C ($6 \times 10 = 60$ Marks)

Answer ALL Questions

31. a) A discrete random variable X has the following probability distribution

X	0	1	2	3	4	5	6	7	8
P(x)	a	3 <i>a</i>	5 <i>a</i>	7a	9a	11 <i>a</i>	13 <i>a</i>	15 <i>a</i>	17a

(i) Find the value of '*a*'.

(ii) Find P(0<X<3), P ($X \le$ 3)

(iii)Find the distribution function of X

b) Out of 800 families with 4 children each.
(i) How many families would be expected to have 2 boys & 2 girls?
(ii) At least one boy (iii) at most 2 girls (iv) children of both genders. Assume an equal probability of boys and girls.

OR

32. a) If X and Y are two random variables having joint density function $f(x, y) = \frac{1}{8}(6 - x - y); 0 < x < 2, 2 < y < 4$. Find (i) $P(X < 1 \cap Y < 3)$ (ii) $P(X < 1 \mid Y < 3)$ (iii) P(X + Y < 3).

OR

- K3 CO2 b) Find the coefficient of correlation between X and Y from the data given below. 10 X: 65 66 67 67 68 69 70 72 *Y*: 67 68 65 68 72 72 69 71
- 33. a) The process $\{X(t)\}$ whose probability distribution under certain condition is given ¹⁰ K3 CO3 by

$$P\{X(t) = n\} = \begin{cases} \frac{(at)^{n-1}}{(1+at)^{n+1}}, & n = 1,2 \dots \\ \frac{at}{1+at}, & n = 0 \end{cases}$$
. Find the mean and variance of the process.

Is the process first-order stationary?

OR

- b) The auto correlation function of a random telegraph signal process is given by $10 \quad K3 \quad CO3$ $(\tau) = A^2 e^{-2\alpha |\tau|}$. Determine the PSD of the random telegraph signal.
- 34. a) If $\{X(t)\}$ is a Gaussian process with $\mu(t) = 10$ and $C(t_1, t_2) = 16e^{-|t_1 t_2|}$, find the ¹⁰ K3 CO4 probability that (i) $X(10) \le 8$, (ii) $|X(10) X(6)| \le 4$.

OR

- b) A housewife buys 3 kinds of cereals A, B and C. She never buys the same cereal in 10 K3 CO4 successive weeks. If she buys cereal A, the next week she buys cereal B. However, if she buys B and C, the next week she is 3 times as likely to buy A as the other cereal. In the long run how often, she buys each of the 3 cereals?
- 35. a) A random process X(t) with $R_{XX}(\tau) = e^{-2|\tau|}$ is the output to a linear system whose ¹⁰ K3 CO5 impulse response is $h(t) = 2e^{-t}$, t > 0 Find (i) Cross correlation $R_{-1}(\tau)$
 - $t \ge 0$. Find (i) Cross correlation $R_{XY}(\tau)$
 - (ii) Cross spectral density $S_{XY}(\omega)$

(iii) Power spectral density $S_{XX}(\omega)$ between the input process X(t) and the output process Y(t).

OR

b) A random process X(t) with $R_{XX}(\tau) = e^{-\alpha |\tau|}$, α is a+ve constant, is applied to a ¹⁰ K3 CO5 input of the linear system whose impulse response is $h(t) = e^{-bt}u(t)$, b is real constant. Find auto correlation of the output process Y(t).

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

10 K3 CO1

K3 CO1

36.	a) i)	State and prove the memoryless property of Geometric distribution.	5	K3	CO1
	ii)	A lifetime of a certain brand of an electric bulb may be considered as a RV with	5	K3	<i>CO2</i>
		mean 1200 hours and standard deviation 250 hours. Find the probability, using central limit theorem that the average lifetime of 60 bulbs exceed 1250 hours.			
		OR			
	b) i)	A typist types 2 letters erroneously for every 100 letters. What is the probability	5	K3	C01
		that the tenth letter typed is the first letter with an error?			
	ii)	The joint pdf is given by $f(x, y) = \frac{1}{3}(x + y), 0 \le x \le 1, 0 \le y \le 2$. Find marginal	5	K3	<i>CO2</i>
		distributions of X and Y.			