Question Paper Code

Duration: 3 Hours

12415

B.E. / B.Tech - DEGREE EXAMINATIONS, NOV / DEC 2023

Fourth Semester

Civil Engineering

(Common to Electrical and Electronics Engineering, Electronics and Instrumentation Engineering, Instrumentation and Control Engineering, Mechanical Engineering & Mechanical and Automation Engineering)

20BSMA403 - STATISTICS AND NUMERICAL METHODS

(Regulations 2020)

Max. Marks: 100

Mauko

PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions

1.	State the application of Chi - square test.	K-Level, CO 2,K1,CO1
2.	What are the uses of F-distribution?	2,K1,CO1
3.	What are the advantages of a Latin square design?	2,K2,CO2
4.	Define Randomized block design.	2,K1,CO2
5.	Solve the system of equations by Gauss Jordan method $2x+y=3$; $7x-3y=4$.	2,K1,CO3
6.	What is the condition of convergence for Newton Raphson method?	2,K1,CO3
7.	What are the errors in Trapezoidal and Simpson's rule?	2,K1,CO4
8.	Write down the expression for $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at $x = x_0$ using Newton's	2,K2,CO4
	forward difference formula.	
9.	Using Taylor series method find y at x = 0.1 if $\frac{dy}{dx} = x^2y - 1$, $y(0) = 1$.	2,K2,CO5
10.	State Adams – Bashforth predictor and corrector formula.	2,K2,CO5
	PART - B $(5 \times 16 = 80 \text{ Marks})$	
11.	 a) A sample of 900 members has a mean 3.4 cm and standard deviation 2.61 cm. Is the sample from a large population of mean 3.25 cms and standard deviation of 2.61 cms? 	16,K2,CO1

OR

b) Theory predicts that the proportion of beans in four groups A,B,C,D ^{16,K2,CO1} should be 9:3:3:1.In an experiment among 3200 beans, the numbers in the four groups were 882,313,287 and 118. Does the experiment support the theory?

16.K3.CO2 12. a) The following data give the yields of 12 plots of land in three samples, each of plots, under varieties of fertilizers A, B and C.

Α	В	С
25	20	24
22	17	26
24	16	30
21	19	20

Is there any significant difference in the average yields of land, under the three varieties of fertilizers?

OR

16,K3,CO2 The following data resulted from an experiment to compare three b) burners C₁,C₂,and C₃.Use the Latin design to test the hypothesis that there in no difference between the burners.

	Machine-1	Machine-2	Machine-3
Day-1	C ₁ -16	C ₂ -17	C ₃ -20
Day-2	C ₂ -16	C ₃ -21	C ₁ -15
Day-3	C ₃ -15	C ₁ -12	C ₂ -13

8,K3,CO3 13. a) (i) Solve the following system by Gauss-Elimination method 3x - y + 2z = 12; x + 2y + 3z = 11; 2x - 2y - z = 2.

> 8,K3,CO3 (ii) Using Newton's method, find the root between 0 and 1 of $x^3 = 6x - 4$ correct to 5 decimal places.

- b) Solve by Gauss-Seidel Methods 10x-5y-2z = 3; 4x-10y + 3z = -3; 16,K3,CO3 x + 6y + 10z = -3.
- 16,K4,CO4 14. The population of a certain town is shown in the following table; find a) the rate of growth of the population in 1931 and 1971.

Year	1931	1941	1951	1961	1971			
Population in lakhs	40.62	60.80	79.95	103.56	132.65			
OB								

- Evaluate $\int_0^6 \frac{dx}{1+x}$ using Trapezoidal rule and Simpson's rule. Also b) check up the results with actual integration.
- 16,K4,CO5 15. a) Using Runge-Kutta method of 4th order, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{v^2 + x^2}$ with

y(0)=1 at x=0.2.

OR

16,K4,CO5 Solve Crank-Nicolson method to solve $u_{xx} = u_t$ given u(0,t) = u(x,0)b) =0, u(1,t) = t, for two time steps.

16,K4,CO4