	Reg. No	D.											
	Question Paper Code	12970											
B.E. / B.Tech DEGREE EXAMINATIONS, NOV / DEC 2024													
	Fourth Semest		10,1		, .		_						
	Civil Engineeri												
	(Common to Electrical and Electronics Engineering, Ele	0	cs ar	nd Iı	nstri	um	enta	atio	n Eng	ginee	ring,		
Instr	rumentation and Control Engineering, Mechanical Engineer	ring &	z Me	chai	nica	l ai	nd A	Auto	omati	ion E	ngine	er	ing)
	20BSMA403 - STATISTICS AND NU	MER	ICA	LN	MET	ΓН	OD	S					
	Regulations - 20												
	(Use of Statistical table is	s perm	itted	.)									
D	uration: 3 Hours								Ma	x. Marks: 100			
	$PART - A (MCQ) (20 \times 1 =$		lark	5)						Mar	ks K Lev	-	со
1	Answer ALL Questi		10							1			CO1
1.	A statement made about a population for testing purpose i			(1) Te	~+ (74-4	::	~	1	K		COI
2.	(a) Statistic (b) Hypothesis (c) Level of Signification The rejection probability of Null Hypothesis when it is true			· · ·	·	st-i	Stat	.1511	Ċ	1	K	,	CO1
۷.	(a) Level of Confidence (b) Level of Significance	le is c	aneo							1	n.		001
	(c) Level of Margin (d) Level of Rejection												
3	Consider a hypothesis H_0 where $\phi_0 = 5$ against H_1 where $\phi_0 = 5$	h1 > 5	The	e tes	t is?	,				1	K	!	CO1
5.	(a) Right tailed (b) Left tailed (c) Centre (a)) Cr		s tai	iled					
4.	If the Critical region is evenly distributed then the test is i		d as'		,					1	K	!	CO1
	(a) Two tailed (b) One tailed (c) Three tailed (d) Zero t												
5.	Analysis of variance is a statistical method of comparing				of s	eve	eral			1	K	!	CO2
	populations.												
	(a) standard deviations (b) variances (c) M	leans			(d)	pro	pop	rtio	ns				
6.	What is the primary purpose of ANOVA?									1	K	!	CO2
	(a) Comparing means across three or more groups												
	(b) Comparing medians across three or more groups												
	(c) Examining the relationship between two categorical v	variabl	es										
7	(d) Identifying normally distributed data	1 1			1	41	•			. 1	K	,	CO2
7.	The sum of squares measures the variability of the observ	ed val	lues	arot	ina	the	ir re	espe	ective	e 1	K		02
	treatment means. (a) treatment (b) error (c) interaction (d) tota	1											
8.	Which of the following assumptions does <i>not</i> apply to AN		2							1	K	2	CO2
0.	(a) Independent observations (b) Normal dist			2001	ntini		IS V	aria	ble	-			002
	(c) Homogeneity of variances (d) Inclusion of							ana					
9.	The Newton-Raphson method formula for finding \sqrt{R} fro							= 0	is	1	K	?	CO3
	$\begin{array}{cccc} x_i & (1) & x_i & 3x_i & (2) & x_i & 1 \\ \end{array}$				1 Л	1 (n -	- 0	R				
	(a) $x_{i+1} = \frac{x_i}{2}$ (b) $x_{i+1} = \frac{3x_i}{2}$ (c) $x_{i+1} = \frac{1}{2} \left(x_i + \frac{R}{x_i} \right)$						$3x_i$		(x_i)				
10.	Rate of convergence of the Newton - Raphson method is		ally _							1	K	!	CO3
	(a) Linear (b) Quadratic (c) Super-l	linear			(d) (Cul	oic						<i>co</i> 2
11.	Give the condition for convergence of iterative method					. 1				1	K		CO3
	(a) $x = \varphi(x)$ (b) $x = \varphi'(x)$ (c) $ \varphi(x) < 1$												~ ~ •
12.	Write a sufficient condition to apply Gauss Seidel method	to so	lve a	ı sys	stem	ı of	eq	uati	on.	1	K		CO3
	(a) The given system is diagonally dominant.												
	(b) The given system is not diagonally dominant.												
	(c) All the diagonal elements are zero (d) None of the above												
12	(d) None of the above Which method can be used for both equal and unequal int	ervol	2							1	K	,	CO4
13.	(a) Lagrange's Method (b) Divided difference met												1
	(c) Cubic Spline method (d) Newton's method	nou											

14.	Newt	on's divided difference interpolation formula	is a interpolation technique used when	1	K1	<i>CO4</i>					
	(a) T	for all sequence of values. he interval difference is same	(b) The interval difference is zero								
	(c) T	he interval difference is not same	(d) All of the above.								
15.		rder of error in Simpson's formula is: ³ (b) h^2 (c) h^4 (d) h		1	K1	<i>CO4</i>					
16.	· · ·	³ (b) h^2 (c) h^4 (d) h rder of error in Trapezoidal formula is:		1	K1	<i>CO4</i>					
	(a) <i>h</i>	³ (b) h^2 (c) h^4 (d) h									
17.		h of the following represents the Taylor's set r^2		1	Kl	<i>CO5</i>					
		$f(x) = y(0) + xy'(0) + \frac{x^2}{2}y''(0) + \frac{x^3}{3}y'''(0)$									
		$(x) = y(0) + xy'(0) + \frac{x^2}{2!}y''(0) + \frac{x^3}{3!}y'''(0)$									
		$f(x) = y(0) - xy'(0) + \frac{x^2}{2}y''(0) - \frac{x^3}{3}y'''(0)$									
	(d) y	$(x) = y(0) - xy'(0) + \frac{x^2}{2!}y''(0) - \frac{x^3}{3!}y'''(0)$)) + ···								
18.		fied Euler's formula is		1	K1	CO5					
		$_{n+1} = y_0 + \frac{n}{2} \left[f(x_n, y_n) + f(x_{n+1}, y_{n+1}) \right]$									
	(b) y	$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n-1}, y_{n-1})]$									
	(c) y	$_{n+1} = y_0 + \frac{h}{2} \left[f(x_n, y_n) + f(x_{n-1}, y_{n-1}) \right]$									
	(d) y	$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$									
19.		nany prior values are required to predict the	next value in Adam's method?	1	K1	CO5					
20	a) Or The s	e b) Two c) Three d) Four andard five point formula is :		1	Kl	CO5					
20.		$u_{i,j} = \frac{1}{4} \left[u_{i-1,j} + u_{i+1,j} + u_{i,j+1} + u_{i,j-1} \right]$									
		$u_{i,j} = \frac{1}{4} \left[u_{i+1,j+1} + u_{i-1,j-1} + u_{i,j+1} + u_{i,j-1} \right]$]								
		$u_{i,j-1} = \frac{1}{4} \left[u_{i-1,j-1} + u_{i+1,j+1} + u_{i,j+1} + u_{i,j+1} + u_{i,j-1} \right]$	-								
		· · · · · · · · · · · · · · · · · · ·									
	(d) $u_{i,j} = \frac{1}{4} \left[u_{i,j-1} + u_{i,j+1} + u_{i+1,j+1} + u_{i-1,j-1} \right]$ PART - B (10 × 2 = 20 Marks)										
$\begin{array}{c} PART - B (10 \times 2 = 20 \text{ Marks}) \\ \text{Answer ALL Questions} \end{array}$											
		e Type-I and Type-II errors.		2	Kl	CO1					
		the uses of chi-square test.		2 2	K1 K2	CO1 CO2					
23. 24	•	a 2 x 2 Latin square is not possible? Explain.		$\frac{2}{2}$	K2 Kl	CO2					
		any two differences between RBD and CRE auss elimination method solve $x + y = 7$, $2x + 3$		2	K2	CO3					
	•	-	-	2	K2	CO3					
26. 27	-	are Gauss Jacobi method and Gauss-Seidel is meant by interpolation?	neuloa.	$\frac{2}{2}$	K2 K1	CO4					
27. 28.				2	K2	CO4					
		ate $\int_0^1 \frac{dx}{1+x}$ with h = 0.5 using Trapezoidal ru		•							
		y' = x + y, $y(0) = 1$. Find $y(0.1)$ by Eul Milne's Predictor corrector formula.	er's method.	2 2	K2 K1	CO5 CO5					
50.	State	while stredictor corrector formula.		2		005					
		PART - C (6 × 1 Answer ALL									
31.	a)	A sample of heights of 6,400 Englishmen l		10	K3	CO1					
51.	u)	while another sample of heights of 1600 A									
		of 6.3cm. Do the data indicate that America	-								
	1 \			10	VJ	COL					
	b)	The theory predicts that the proportion of should be 9:3:3:1.In an experiment amon	• •	10	ЛĴ	CO1					
		groups were 882, 313, 287 and 118. Do the	-								

32. a) A company appoints 4 salesmen (A, B, C and D) and observes their sales in 3 ¹⁰ ^{K3} ^{CO2} seasons as shown. Carry out analysis of variance using two-way classification.

	Salesman					
	A B C					
Summer	45	40	38	37		
Winter	43	41	45	38		
Monsoon	39	39	41	41		
OR						

b) A variable trial was conducted on wheat with 4 varieties in a Latin Square Design. ¹⁰ K3 CO2 The plan of the experiment and the plot yield are given below. Analyze data and interpret the result.

C25	B23	A20	D20
A19	D19	C21	B18
B19	A14	D17	C20
D17	C20	B21	A15

33. a) Find the smallest positive root of $x^2 - 5x + 1 = 0$, correct to four decimal places by 10 K3 CO3 fixed point iteration method.

OR b) Determine the numerically largest eigen value and the corresponding eigen vector 10 K3 CO3 of the following matrix, using the power method. $\begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$

34.	a)	Use Lagrange's interpolation formula to find $f(10)$ from the following data:	10	K3	<i>CO4</i>							
		x 5 6 9 11										
		f(x) 12 13 14 16										
OR												
	b)	Evaluate $\int_{1}^{1.2} \int_{1}^{1.4} \frac{1}{1+x} dx dy$ by Trapezoidal rule with $h = k = 0.1$.	10	K3	<i>CO4</i>							
35.	a)	Apply Runge - Kutta method to find approximate value of y for $x = 0.1$ if	10	K3	<i>CO5</i>							
	$\frac{dy}{dx} = x + y^2$ given that $y = 1$ when $x = 0$.											
	b)	OR Given $\frac{dy}{dx} = x^2(1+y)$, $y(1) = 1$, $y(1.1) = 1.233$, $y(1.2) = 1.548$, $y(1.3) = 1.979$.	10	K3	CO5							
	,	Evaluate $y(1.4)$ by Adam's Bash-forth method.										
36.	a) i)	Construct the divided difference table for the following data.	5	K3	<i>CO4</i>							
		x 0 2 3 4 7 9										
	::)		5	K3	CO5							
	11)	Solve $y' = x + y$, $y(0) = 1$ by Taylor's series method. Find the values of y at $x = 0.1$	5	пJ	005							
	$\chi = 0.1$ OR											
	b) i)	Dividing the range into 10 equal parts, find the approximate value of $\int_{\sin x dx}^{\pi}$ by	5	К3	CO4							
	ii)	5	K3	CO5								
	,	Using Euler's method find y at x = 0.1 given that $\frac{dy}{dx} = \frac{y-x}{y+x}$, y(0) = 1										

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

12970