Reg. No.								

Question Paper Code

12755

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2024

Fourth Semester

Computer Science and Engineering (AIML)

(Common to Artificial Intelligence and Data Science)

20BSMA404 - LINEAR ALGEBRA AND ITS APPLICATIONS

Regulations - 2020

Duration: 3 Hours Max. Marks: 100 PART - A $(10 \times 2 = 20 \text{ Marks})$ Marks K-**Answer ALL Questions** 1. Can Vector $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$ be written as the linear combination of vectors $\begin{bmatrix} -3 \\ 1 \end{bmatrix}$ Find the rank of $\begin{pmatrix} 1 & 1 & 0 & -2 \\ 2 & 0 & 2 & 2 \\ 4 & 1 & 3 & 1 \end{pmatrix}$. Find transpose and trace of $\begin{pmatrix} -4 & 2 \\ 5 & -1 \end{pmatrix}$. K1 CO1 K1 CO2 K1 CO2 4. Define Basis and Dimension. 5. If $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(a_1, a_2) = (2a_1 + a_2, a_1)$ then verify T is Linear or not. K1 CO3 6. Let V(F) and W(F) be vector spaces and $T: V \to W$ be a linear K2 CO3 transformation. Then prove that N(T) is a subspace of V. K1 CO4 7. Define Orthonormal set. 8. Show that $||x + y||^2 + ||x - y||^2 = ||x||^2 + ||y||^2$ for x, y \in V. 2 K2 CO4 2 K1 CO5 Find the largest eigenvector of $A = \begin{pmatrix} 4 & 0 \\ 3 & -5 \end{pmatrix}$.

$PART - B (5 \times 16 = 80 Marks)$

Answer ALL Questions

Determine the value of a and b if the matrix
$$A = \begin{pmatrix} 2 & 1 & -1 & 3 \\ 1 & -1 & 2 & 4 \\ 7 & -1 & a & b \end{pmatrix}$$
 is

of rank 2.

10. State any two applications of PCA in data science.

ii) Solve the System of equations by Gaussian Elimination Method 10 K3 CO1

$$2x - 2y + 3z = 2;$$

 $x + 2y - z = 3;$
 $3x - y + 2z = 1$

OR

K1 CO5

- b) Solve the system of equations $x_1 + x_2 + x_3 = 1; \ 3x_1 + x_2 3x_3 = 5; \ x_1 2x_2 5x_3 = 10$ by LU decomposition method.
- 12. a) i) Prove that $2x^3 2x^2 + 12x 6$ is a linear combination of ⁸ K3 CO2 $x^3 2x^2 5x 3$ and $3x^3 5x^2 4x 9$.
 - ii) Verify the set $\{x^3 + 2x^2, -x^2 + 3x + 1, x^3 x^2 + 2x 1\}$ in $P_3(R)$ 8 K3 CO2 is linearly independent or linearly dependent.

OR

- b) i) Let V beavector space and $\beta = \{u_1, u_2, \dots u_n\}$ be a subset of V. Then $\delta = K3 CO2$ prove that β is a basis for V if and only if each $v \in V$ can be uniquely expressed as a linear combination of vectors of β .
- ii) Prove that a subset W of a vector space V is a subspace of V if and 8 K3 CO2 only if $\alpha u + \beta v \in W$ for all $u, v \in W$ and $\alpha, \beta \in F$.
- 13. a) i) Let V and W be vector spaces and let $T: V \to W$ be linear. If V is finite-dimensional then prove that $Nullity(T) + Rank(T) = \dim(V)$.
 - ii) Prove that there exists a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ such that T(1,1) = (1,0,2) and T(2,3) = (1,-1,4). What is T(8,11).

OR

b) For the following matrix $A \in M_{n \times n}(R)$, test A for diagonalizability 16 K3 CO3 and if A is diagonalizable, find an invertible matrix Q and a diagonal matrix D such that $Q^{-1}AQ = D$.

$$A = \begin{pmatrix} 7 & -4 & 0 \\ 8 & -5 & 0 \\ 6 & -6 & 3 \end{pmatrix}$$

14. a) Find QR Decomposition (Gram Schmidt Method) for the following 16 K3 CO4 Matrix.

$$\begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix}$$
OR

- b) Let $A = \begin{pmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{pmatrix}$ Find the orthogonal matrix P and the diagonal matrix D such that $P^tAP = D$.
- 15. a) Find Singular Value Decomposition for $A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \end{pmatrix}$.
 - b) Suppose A_0 has these two measurements of 5 sample. ¹⁶ K3 CO5 $A_0 = \begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ -1 & 1 & 0 & 1 & -1 \end{bmatrix}$. Compute the centred matrix A, sample covariance S, eigen values λ_1, λ_2 . what is the line through the origin is closest to the 5 sample in the column of A.