				Reg	g. No.									
			Question Paper Code		12416									
BE / BTech - DECREE EXAMINATIONS NOV / DEC 2023														
			Fourth	Ser	nester	<i>S</i> 1 (<i>S</i> ,	110		DL					
			Artificial Intelligen	ice a	and Da	ta Sci	ienc	e						
		20BSMA4	04 - LINEAR ALGE	BRA	A AND	ITS A	APF	PLI	[CAT	10	NS			
			(Regulat	tions	\$ 2020)									
Duration: 3 Hours Max. Mark										:s: 1(00			
			PART - A (10	$\times 2$	= 20 M	arks))							
1.	Exr	press the v	Answer Al ector $(1, -2, 5)$ as	a 1	linear	comh	oinat	tior	ı of	Ví	ecto	ors	Ma K-Lev 2,K1	ırks, v el, CO !,CO1
	(1,	1,1), (1, 2,3)	&(2,−1,1).											
2.	Def	fine Rank of a	a Matrix.										2,K1	,CO1
3.	Define subspace with example.										2,K2	,CO2		
4.	Write the standard basis of the vector space $P_n(R)$.									2,K2	2,002			
5.	Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(a_1, a_2) = (2a_1 + a_2, a_1)$. Show that T is linear.										2,KI	,003		
6.	Let $V(F)$ and $W(F)$ be vector spaces and $T: V \to W$ be a linear transformation. Then $N(T)$ is a subspace of V.								ar	2,K1	,CO3			
7.	Prove that $\langle x, cy \rangle = \bar{c} \langle x, y \rangle$.									2,K1	,CO4			
8.	Let V be an inner product space, and suppose that x and y are orthogonal vectors in V, prove that $ x + y ^2 = x ^2 + y ^2$.										2,K2	?,CO4		
9.	Define Singular Vector.									2,K2	2,CO5			
10.	Why we use SVD and PCA in Data Science.										2,K2	2,CO5		
PART - B (5 × 16 = 80 Marks) Answer ALL Questions														
11.	a)			(2	1	-1	3)						8,K2	?,CO1
		(i) Find the	value of a and b if A	$= \begin{vmatrix} 1 \\ 7 \end{vmatrix}$	-1 -1	2 · a	4 i b	is o	of ranl	ς 2.				
		(ii) Solve by	Cramer's rule $x_1 - 2x_1 - 3x_1 + 0$	$+ x_2$ $6x_2$ $4x_2$ R	$x_{2} + x_{3} = -x_{3} + 2x_{3}$	= 11 = 0 = 0	,						8,K3	8,CO1
	b)	(i) Solve by	LU Decomposition m x - 3v	ethc – 8	dz = -1	.0							8,K3	8,CO1

$$x - 3y - 8z = -10$$
$$3x + y = 4z$$
$$2x + 5y + 6z = 13$$

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12416

		(ii) Solve the system by Gauss Elimination Method $5x_1 + 3x_2 + 7x_3 = 4$ $3x_1 + 26x_2 + 2x_3 = 9$ $7x_1 + 2x_2 + 10x_3 = 5$	8,K3,CO1				
12.	a)	Show that $R^n = \{(x_1, x_2, x_3,, x_n): x_i \in R\}$ is a vector space over F with respect to addition and scalar multiplication defined component wise.					
		OR					
	b)	(i) Prove that the intersection of two subspaces of a vector space V is again a subspace of V.	8,K3,CO2				
		(ii) The union of two subspaces a vector space is a subspace of V if f one is contains the other.	8,K3,CO2				
13.	a)	(i) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be linear transformation defined by $T(x, y, z) = (x - y, 2z)$. find N(T), R(T), nullity and rank of T.	8,K3,CO3				
		(ii) Determine the matrix of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(x, y) = (x - y, x, 2x + y)$ relative to the standard basis \mathbb{R}^2 .	8,K3,CO3				
		OR					
	b)	State and prove Dimension Theorem.	16,K3,CO3				
14.	a)	(i) State and prove Cauchy-Schwarz inequality.					
		(ii) Compute the least square solution of the equations $x+5y=3$; $2x-2y=2$; $-x+y=5$. Also find the least square error. OR	8,K4,CO4				
	b)	Determine the QR-Decomposition of the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{bmatrix}$.	16,K4,CO4				
15.	a)	(i) Determine the matrix U, Σ , V such that A=U Σ V ^T , where A= $\begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix}$.					
		(ii) Discuss the applications of Linear Algebra in Data Science. OR	8,K4,CO5				
	b)	Suppose A_0 has these two measurements of 6 sample. $A_0 = \begin{bmatrix} 1 & 0 & -1 & 1 & 2 & 3 \\ 0 & 1 & 0 & 3 & 2 & 1 \end{bmatrix}$ Compute the centred matrix A, sample covariance S, eigen values λ_1, λ_2 . what is the line through the origin is	16,K4,CO5				

closest to the 6 sample in the column of A.