	Re	eg. No.								
	Question Paper Code	125	12541							
	B.E. / B.Tech DEGREE EXAM	INATION	IS, NC	DV	/ D	EC	202	3		
	First Sen	nester		1 D			c		`	
	(Common to All Branches except Comp 2005001101 ENCINE	outer Scien	ce and	1 Bi Ce	JSII	iess	Sys	tem	s)	
	20BSPHI0I - ENGINE	EKING PI	HYSI	CS						
Dur	(Regulations	5 2020)				м	ov 1	Mar	ka• 1	00
Dur	PART - A (10 × 2 Answer ALL (= 20 Mar Questions	ks)			IVI	an. 1	viai	K5. I	00
1.	Define primitive and non-primitive cells.								M K-Le 2,K	l arks, zvel, CO 2 ,CO1
2.	For a cubic system, sketch the planes with	Miller Ind	lices (101) ai	nd (111)).	2,K	2, CO1
3.	Mention the Characteristics of a laser bea	m.							2,K	2, CO2
4.	Estimate the band gap energy of InP Lase 8015°A.	er which en	nits lig	ght	of	wav	elen	gth	2,K	2, CO2
5.	Distinguish between step-index and graded	d-index fib	ers.						2,K	2, CO3
6.	Identify the losses in optical fiber.								2,K	2, CO3
7.	Tell the factors that are affecting elasticity	·							2,K	2, CO4
8.	Identify the applications of I-shape girders	5.							2,K	2, CO4
9.	What is bimetallic strip? Give its use.								2,K	2,CO6
10.	Define a heat exchanger. Give example.								2,K	2, CO6

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11. a) Explain Miller Indices. Derive the expression for the Interplanar ^{13,K2,CO1} spacing or d-spacing for (hkl) planes of a cubic structure.

OR

- b) Show that the Atomic Packing Factor for HCP and FCC are same. 13,K2,CO1
- 12. a) Describe with a neat sketch the principle, construction and working of 13, K2, CO2 a CO₂ laser.

OR

- b) Derive the expression for the Einstein's coefficient of spontaneous and *13,K2,CO2* stimulated emissions.
- 13. a) Derive expressions for the acceptance angle and numerical aperture for ^{13,K2,CO3} an optical fiber cable (OFC).

OR

- b) Give an account on fiber optic pressure and displacement sensors. 13,K2,CO3
- 14. a) Derive the expression for Young's modulus by uniform bending and ^{13,K2,CO4} give the experimental procedure to find it.

OR

- b) Explain the term cantilever? Obtain expression for the depression at ^{13,K2,CO4} the loaded end of cantilever whose other end is fixed as summing that its own weight is not effective in bending.
- 15. a) Describe Forbe's method to determine thermal conductivity of metals ^{13,K2,CO6} with relevant theory and experiment.

OR

b) Derive the expression for effective thermal conductivity through ^{13,K2,CO6} compound media in series and parallel.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Derive Schrodinger's time-independent and time dependent wave 15,K2,C05 equations.

OR

b) Explain the term Compton Effect? Derive the equation for a Compton 15,K2,CO5 shift.