	Reg. No.		
	Ouestion Paper Code 12925		
B.E. / B.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024			
First Semester			
Civil Engineering			
(Common to All Branches)			
20BSPH101 - ENGINEERING PHYSICS			
Regulations - 2020			
Duration: 3 Hours Max. Marks: 100			
	PART - A ($10 \times 2 = 20$ Marks) Answer ALL QuestionsMarks $\frac{K}{Level}$ CO		
1.	What are Bravais lattice?	2	KI COI
2.	Tell the meaning of polymorphism and allotropy.	2	K2 CO1
3.	What are the conditions for LASER action?	2	K2 CO2
4.	Find the wavelength of light emitted by Ga-As Laser with band gap energy of 1.44 eV.	y 2	K2 CO2
5.	Explain intermodal dispersion is and how it is reduced by using a GRIN fiber.	J 2	K2 CO3
6.	Define the term attenuation.	2	K2 CO3
7.	Explain the term neutral axis.	2	K2 CO4
8.	Describe an I-shaped girder.	2	K2 CO4
9.	Define an expansion joint? List out their types.	2	K2 CO6
10.	Identify the uses of solar power.	2	K2 CO6
$PART - B (5 \times 13 = 65 Marks)$			
11	Answer ALL Questions	13	K2 CO1
11.	Co-ordination number, atomic radius and packing factor.	,	
	b) Explain the two melt growth techniques:-		
	i) Czocharalski's method.	7	K2 CO1
	ii) Bridgeman method.	6	K2 CO1
12.	a) i) List out the population techniques and explain it.	6	K2 CO2
	ii) Summarize the homo-junction laser with suitable diagram.	7	K2 CO2
OR			
	b) Describe with a neat sketch the principle, construction and working o a CO_2 laser.	f 13	K2 CO2
K1	– Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create		12925

13. a) Explain how optical fibers are classified. Discuss their characteristics ¹³ K2 CO3 features.

OR

- b) Explain the working of temperature and displacement sensors in detail. 13 K2 CO3
- 14. a) i) Deduce an expression for the couple to produce a unit twist in a long 8 K2 CO4 cylindrical wire fixed at one end.
 - ii) Explain factors affecting elasticity.

OR

- b) Explain the term cantilever? Obtain an expression for the depression at ¹³ K² CO⁴ the loaded end of cantilever whose other end is fixed as summing that its own weight is not effective in bending.
- 15. a) Describe Lee's disc method for determining thermal conductivity of ¹³ K² CO6 bad conductors.

OR

b) Derive the expression for effective thermal conductivity through ¹³ K² CO6 compound media in series and parallel.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Derive Planck's law for black body radiation and hence deduce ¹⁵ K2 CO5 Wien's displacement law and Rayleigh–Jean's law.

OR

b) Explain the principle, construction, working and applications of ¹⁵ K2 CO5 Scanning Tunneling Microscope. Also mention its advantages and disadvantages.

5 K2 CO4