		Reg. N	0.											
		L								<u> </u>	1 1			
	Question Paper Code			13121										
B.E. / B.Tech DEGREE EXAMINATIONS, NOV / DEC 2024														
First Semester														
Computer Science and Business Systems														
	20BSPHI02 - FUNDAMENTALS OF PHYSICS Bogulations 2020													
Duration: 3 Hours M									Ma	x M	arks	100		
Du	PART - A (MCQ) $(20 \times 1 = 20 \text{ Marks})$							1,10		К-				
	Answer AL	L Questi	ons			, 						Marks	Level	
1.	The main principle used in Interference is	(1.) C	_	•••	•	D	•	1.				1	Kl	COI
	(a) Heisenberg's Uncertainty Principle (c) Quantum Mechanics	(b) Sup (d) Fermi	erpo ni Pı	sit rin	ion cin	Prii	ncip	le						
2.	Which of the following factors does the intensity	of light	depe	enc	d or	ie i?						1	K1	CO1
	(a) Frequency (b) Wavelength	(c) An	nplita	ude	e		(d)	Ve	eloci	ity				
3.	X-ray crystallography uses which characteristic	of light?										1	K2	<i>CO1</i>
4	(a) Polarization (b) Interference	(c) Dif	fract	101	n		(d)	Co	oher	enc	у	1	K I	CO^{2}
4.	(a) unit cell (b) Miller indices	as (c) Br	avais	2			(d)	an	norn	hor	16	1	K1	002
5.	Atomic packing factor for BCC is	(c) DI	1 v a 15	,			(u)	an	loip	not	15	1	K1	<i>CO2</i>
	(a) 0.52 (b) 0.74	(c) 0.6	8				(d)) 0.	34					
6.	Allotropes differ in which of the following			_							_	1	K2	CO2
7	(a) atomic number (b) crystal structure ((c) mass	num	be	r	(d) nu	mb	er o	f m	oles	1	K٦	<i>CO</i> 3
1.	Damping force on a spring mass system is quantities?	proportio	mai	10	W	nicn	01	un	e 10	110	wing	1	Π2	COJ
	(a) Velocity (b) Acceleration (c) Displacement	from me	an po	osi	tio	1 (d	l) (v	elo	city)	2				
8.	If the metal bob of a simple pendulum is replace	d by a w	oode	en l	bob	, the	en its	s ti	me ŗ	oeri	od	1	K2	СО3
	will													
0	(a) increase (b) decrease (c) remain the	e same	d) illati	l) 1 ion	ncr	ease	and	l th	en d	ecr	ease	1	K1	CO3
9.	(a) Frequency of forced oscillator									000				
	(b) Their natural frequency													
	(c) No specific frequency													
10	(d) Sum of frequency of forced oscillator & their	r natural	frequ	ler	ncy							1	VI	<i>CO1</i>
10.	Electromagnetic charges are produced by (a) stationary charge (b) accelerated charge (c)	charge i	n ma	stic	าท	(d)	chai	rae	d na	rtic	lec	1	Λ1	004
11.	Which of the following law do not form a Maxy	vell equa	tion	λı	Л	(u)	Cha	igu	u pa	i tic	105	1	K1	<i>CO</i> 4
	(a) Planck's law (b) Gauss's law (c)	Faraday	s lav	v		(d)	Am	per	e's	law				
12.	The enthalpy and internal energy are the function	on of tem	perat	tur	e fo	or		•				1	K1	<i>CO</i> 4
10	(a) all gases (b) steam (c) w	ater				(d)	idea	l ga	as			1	<i>V</i> 1	CO5
13.	If the materials which have resistivity more than (a) semiconductors (b) insulators	13 eV, tl	ien tl	hey	y ar	e ca	lled	as (J		~ ~ ~		1	ΚI	COS
14	(a) semiconductors (b) insulators	(0)	cond	luc	tors	5		(a) coj	ppe	ſ	1	K1	CO5
1	(a) electrons (b) protons (c)	neutrons				(d)	pos	sitro	on					
15.	Ideally, black body can emit and absorb						T					1	K1	<i>CO5</i>
	(a) Red (b) blue (c)	yellow				(d)	all	wa	vele	ngtl	hs			~~-
16.	Rayleigh Jean's law holds good for	(1.) T.				1	- 41.					Ι	KI	CO5
	(a) Shorter wavelength (c) X Ray region	$(\mathbf{d}) \mathbf{L} \mathbf{d}$	nger 1 tvn	r W	ave	way	gth elen	oth	15					
17.	The principle of LASER is	(u) A	тур	~~>	01	vv a V		SU	1.5			1	K1	<i>CO6</i>
. •	(a) spontaneous emission (b) stimulated emis	ssion	(c) 1	ref	lec	tion	(d)) tra	ansn	niss	sion			
K1 -	- Remember; K2 – Understand; K3 – Apply; K4 – Analyze;	K5 – Eval	uate;	<i>K6</i>	б — С	reat	е						13	121
		1												

18.	The	transition of atoms from higher to lower state is not triggered in emission.	1	K2	<i>CO6</i>
	(a) s	timulated (b) spontaneous (c) forced (d) triggered			
19.	Whi	ch of the following pumping methods is used in Nd:YAG laser?	1	K1	<i>CO6</i>
• •	(a) I	Direct conversion (b) Optical pumping (c) Chemical (d) Electric discharge			
20.		is the light carrying member of an optical fiber.	Ι	K2	<i>CO</i> 6
	(a) (Cladding (b) Core (c) Buffer (d) Outer jacket			
		$PART - B (10 \times 2 = 20 \text{ Marks})$			
21	C	Answer ALL Questions	2	K2	CO1
21.	Sum	imarize the fundamental conditions for obtaining sustained interference pattern.	2	K2 K1	
22.	Den	ine the term polarization.	2	KI KI	CO^{2}
23. 24	HOV	crystalline materials differ from non-crystalline?	2	K2	CO_2
24. 25	Con	Ipare primitive and non-primitive cen.	2	K2	CO2
23. 26	Exp	tain the criterion for the motion to be simple narmonic.	2	K2 K1	CO3
20. 27	W fia	at is damping?	2	K1	CO4
$\frac{21}{20}$	Stat	ing the way of DV diagram in the man dynamics.	2	K2	CO_{4}
28.	Out	tine the use of PV diagram in thermodynamics.	2	K2 K1	C04
29. 20	Wer	ation some physical significance of wave function.	2	KI KI	CO5
30.	wna	at is the principle of light propagation in an optical liber?	2	ΚI	000
		PART - C ($6 \times 10 = 60$ Marks)			
21	2)	Answer ALL Questions	10	K?	CO1
51.	a)	derive the expression for its fringe width.	10	112	001
	1 \	OR I I I I I I I I I I I I I I I I I I I	10	vr	COL
	D)	for the diameter of dark.	10	K2	COI
32.	a)	With a neat sketch, calculate the atomic packing factor for BCC and FCC crystal structures.	10	K2	<i>CO2</i>
		OR			
	b)	Derive the expression for the interplanar spacing in a cubic structure.	10	K2	<i>CO2</i>
22	a)	Evaluin the concept of domaid harmonic oscillation in LCP circuit and derive its	10	к?	C03
55.	a)	differential equation.	10	112	005
		OR			
	b)	With neat sketch derive the expression for time period of oscillation and frequency of a spring -mass system suspended horizontally.	10	K2	СО3
34.	a)	Derive Maxwell's equations in integral form.	10	K2	<i>CO</i> 4
		OR			
	b)	Explain the concept of heat engine operating between two different heat reservoirs and derive expression for its efficiency.	10	K2	<i>CO4</i>
35.	a)	Deduce the expression for De-Broglie wavelength and represent it in the form of energy and accelerating potential.	10	K2	CO5
	b)	OR Derive the expression for time independent Schrodinger wave equation for a free particle in three-dimensional space.	10	K2	CO5
36.	a)	For atomic transitions, derive Einstein's coefficients A and B.	10	K2	<i>CO6</i>
	b)	Describe the classification of optical fibers based on mode and refractive index profile.	10	K2	<i>CO</i> 6