	Reg. No.				
	Question Paper Code 12926				
B.E. / B.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024					
First Semester					
Computer Science and Business Systems					
20BSPH102 - FUNDAMENTALS OF PHYSICS					
Regulations - 2020					
Duration: 3 Hours Max. Marks: 100					
PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions			Marks ^K – CO Level CO		
1.	Define unit cell.	2	K1	<i>CO2</i>	
2.	The lattice constant for a unit cell of aluminum is 4.049 A. Calculate the spacing of (220) plane.	2	K2	CO2	
3.	Is it necessary that all simple harmonic motion be periodic in nature and vice versa?	2	K2	СО3	
4.	Define Q-factor (or) Quality factor.	2	Kl	СОЗ	
5.	State continuity equation.	2	Kl	<i>CO</i> 4	
6.	State Zeroth law of thermodynamics.	2	K1	<i>CO</i> 4	
7.	How will you distinguish between metals, semiconductors and insulators based on band theory?	2	K2	CO5	
8.	Mention some physical significance of wave function.	2	K2	CO5	
9.	Distinguish between spontaneous and stimulated emission.	2	K1	<i>CO6</i>	
10.	What is the principle of an optical fiber?	2	K1	<i>CO6</i>	

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11. a) Explain the procedure to obtain the miller indices of crystal planes with ¹³ K² CO² suitable example. And also derive an expression for inter planar d-spacing in a cubic structure.

OR

- b) What is packing factor? Obtain packing factors for SC, BCC, and FCC ¹³ K² CO² lattices.
- 12. a) Derive the expression for energy decay quality for a damped harmonic ¹³ K² CO³ oscillator and give the reason for energy dissipation.

OR

b) With neat sketch derive the expression for time period of oscillation ¹³ K2 CO3 and frequency of a spring -mass system suspended both horizontally vertically.

1

12926

13. a) Derive Maxwell's electromagnetic wave equation for a non-conducting ¹³ K² CO4 medium and in vacuum.

OR

- b) Define Entropy. What is its physical significance? Show that the ¹³ K² CO⁴ entropy remains constant in a reversible process. What happens if the process is an irreversible one?
- 14. a) Deduce an expression for black body radiation using Planck's quantum ¹³ K2 CO5 theory in terms of frequency.

OR

- b) Derive Schrodinger's time independent and time dependent wave 13 K2 CO5 equation for matter waves.
- 15. a) Describe the principle, construction and working of a CO_2 laser with a ¹³ K² CO6 neat sketch.

OR

b) Classify the types of fiber based on materials, mode and refractive 13 K2 CO6 index.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Explain the phenomenon of interference in young's double slit ¹⁵ K² CO1 experiment and derive the expression for its fringe width.

OR

b) Explain the theory of plane transmission grating and derive equation of ¹⁵ K2 CO1 maxima and minima.