	Reg. No.									
Question Paper O	Question Paper Code 12		1							
B.E. / B.Tech DEGREE I	EXAMINATI	ONS,	NO	V / DE	EC 2	024				
Sec	cond Semester									
Electronics and Co	ommunication	i Engi	ineer	ing						
(Common to Electrica	al and Electror	ics Er	ngine	ering)						
20BSPH201 - PHYSICS	S OF ELECT	RONI	CD	EVIC	ES					
Regu	lations - 2020									
Duration: 3 Hours							Max. N	/ark	s: 1()0
PART - A (MCC Answer A	2) (20 × 1 = 20 ALL Question) Mar	ks)				Ма	rks L	K – evel	со
1. Average time taken by a free electron betwe	en two succes	sive co	ollisi	on is c	allec	l as			К2	CO1

	$rant - A (MCQ) (20 \times 1 - 20 Marks)$ Answer ALL Questions	Marks	K – Level	СО
1	Answer ALL Questions		K2	CO1
1.	(a) Mean free noth (b) Collision time (c) Drift velocity (d) Relayation time	-		
2	Semiconductors have resistivity	1	K1	CO1
2.	(a) between conductor and insulator (b) more than insulators	-		
	(c) depends on the property of semiconducting material (d) less than conductors			
3	In the case of insulators, as the temperature decreases resistivity	1	K2	C01
5.	(a) decreases (b) remains constant (c) becomes zero (d)increases			
Δ	Example for dia-magnetic materials are	1	K1	CO2
т.	(a) super conductors (b) alkali metals (c) transition metals (d) Ferrites			
5	The substances which are attracted by the magnetic field are	1	K1	<i>CO2</i>
5.	(a) diamagnetic (b) paramagnetic (c) ferromagnetic (d) ferrimagnetic			
6	Example for hard magnet	1	K1	<i>CO2</i>
0.	(a) permalloy (b) CrO_2 (c) $Fe-Pd$ (d) $Alnico$			
7	Dielectric strength of a material implies its	1	K2	CO3
<i>,</i> .	(a) energy storage capacity (b) magnetic strength			
	(c) capacity to withstand high voltage (d) none of the above.			
8.	The process of producingby an electric field is called polarization in dielectrics.	1	K1	CO3
	(a) Electric dipoles (b) Aligned electrons (c) Magnetic dipoles (d) Polar molecules			
9.	When the electrical field is applied to the dielectric, the positive nucleus moves	1	K2	CO3
	towards the field direction and negative electron moves in opposite direction of field is			
	explained by			
	(a) Lorentz force (b) Coulomb force (c) Electric force (d) Magnetic force			
10.	Addition of pentavalent impurity to a semiconductor creates many	1	K2	<i>CO</i> 4
	(a) Free electrons (b) Holes (c) Valence electrons (d) Bound electrons			
11.	The random motion of holes and free electrons due to thermal agitation is called as	1	K1	<i>CO</i> 4
	(a) Diffusion (b) Pressure (c) Ionisation (d) None of the above			
12.	Between the peak point and the valley point of tunnel diode, there isregion.	1	K2	<i>CO</i> 4
	(a) Saturation (b) Negative resistance (c) Cut-off (d) None of the above			
13.	The number of depletion layers in a transistor is	1	K1	CO5
	(a) four (b) three (c) one (d) two			
14.	In a npn transistor, are the minority carriers	1	K1	<i>CO5</i>
	(a) free electrons (b) holes (c) donor ions (d) acceptor ions			
15.	The relation between β and α is	1	K2	<i>CO5</i>
	(a) $\beta = 1 / (1 - \alpha)$ (b) $\beta = (1 - \alpha) / \alpha$ (c) $\beta = \alpha / (1 - \alpha)$ (d) $\beta = \alpha / (1 + \alpha)$			
16.	The C-B configuration is used to provide which type of gain?	1	K1	CO5
	(a) voltage (b) current (c) resistance (d) power			
17.	In a JFET, gates are always	1	K1	<i>CO6</i>
	(a) Unbiased (b) Reverse biased (c) Either forward or reverse biased (d) Forward			
	biased			

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 1

12991

18.	One	e of the major applications of JEFT is in	1	Kl	<i>CO6</i>
	(a)	Switching (b) Electron flow regulation			
	(c)	Constant voltage source (d) Constant current source			
19.	In P	-channel FET the current is due to	1	K2	<i>CO6</i>
	(a) I	Electrons (b) Holes (c) Both holes and electrons (d) Either holes or electrons			
20.	Saturation region of a IFFT is also known as region			K1	<i>CO6</i>
20.	(a) I	Pinch off (b) Analog (c) Source (d) Ohmic			
	()	PART - B (10 × 2 = 20 Marks)			
		Answer ALL Questions			
21.	Obta	ain the microscopic form of ohm's law.	2	K2	<i>CO1</i>
22.	Wha	at is Fermi energy level? Give its significance.	2	K1	<i>CO1</i>
23.	Define intensity of magnetization.		2	K1	<i>CO2</i>
24.	State	e Curie Weiss law.	2	K1	<i>CO2</i>
25.	Wha	t is meant by polarization in dielectrics?	2	<i>K1</i>	CO3
26.	What are the various types of dielectric breakdown?		2	K1	CO3
27	Wha	it is meant by Transition and diffusion canacitance?	2	K1	<i>CO</i> 4
28	Wha	it is meant by Reverse recovery time of a diode?	2	K1	<i>CO</i> 4
29	Why	7 BIT is called current controlled device?	2	K2	CO5
30	Whi	ch is meant by Pinch Off Voltage?	2	<i>K1</i>	<i>CO</i> 6
50.	** 111	en is meant by Timen off Voltage.			
		PART - C ($6 \times 10 = 60$ Marks)			
		Answer ALL Questions			
31.	a)	Deduce mathematical expression for electrical conductivity and thermal conductivity of a conducting material.	10	K2	<i>CO1</i>
	1 \	OR	10	W2	<i>c</i> 01
	b)	Function based on the band theory of solids.	10	K2	COI
32.	a)	Discuss briefly about the classification of magnetic materials based on magnetic moment / spin alignment.	10	K2	<i>CO2</i>
		OR			
	b)	Explain the structure, properties and applications of Ferrites.	10	K2	<i>CO2</i>
33.	a)	Discuss any two types of polarization mechanism and the polarizability involved in dielectric materials.	10	К2	СО3
		OR	10		
	b)	Derive an expression for Internal field.	10	K2	<i>CO3</i>
34.	a)	Derive an expression for the carrier concentration of electrons in an intrinsic semiconductor with neat energy band diagram.	10	К2	<i>CO4</i>
	b)	Discuss the construction, working and characteristics of a Laser diode.	10	K2	<i>CO</i> 4
35.	a)	Explain the construction, working of a NPN transistor and also the input and output characteristic of CE configuration.	10	K2	CO5
	b)	Explain h parameter of transistor and draw the equivalent circuit of a transistor.	10	K2	CO5
36.	a)	Explain with a neat sketch the construction, working and characteristics of N-channel JFET.	10	K2	<i>CO</i> 6
		OR			
	b)	Explain the construction, working operation and characteristics of SCR with a neat sketch.	10	K2	<i>CO6</i>