	Reg. No.								
	Question Paper Code12807								
B.E. / B.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024									
Second Semester									
Electrical and Electronics Engineering									
(Common to Electronics and Communication Engineering and Computer and Communication									
Engineering)									
20BSPH201 – PHYSICS OF ELECTRONIC DEVICES									
Regulations - 2020									
Duration: 3 Hours Max. Marks: 100									
PART - A $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions									
1.	Use the Fermi distribution function to obtain the value of $F(E)$ for $E-E_F=0.01$ eV at 200K.	2	K3	C01					
2.	2. Define effective mass of an electron.								
3.	3. Distinguish between intrinsic and extrinsic semiconductor.								
4.	4. List out the properties of semiconductor.								
5.	A magnetic field of 1800 A/m produces a magnetic flux of 3×10^{-5} Wb in an iron bar of cross-section area 0.2 cm ² . Calculate the permeability.	2	K2	СО3	;				
6.	Define dielectric loss.	2	K1	CO3	1				
7.	A BJT has a base current of 200 μ A. Determine the collector current and β .	2	K2	<i>CO4</i>	!				
8.	Define early effect.	2	K2	<i>CO4</i>	!				
9.	Give a reason for which N-Channel FET's are Preferred over P-Channel FET's.	2	K2	CO5	;				
10.	Differentiate the features of CCD and Solar cell.	2	K2	CO5	i				

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11. a) Deduce mathematical expressions for thermal and electrical ¹³ K² CO1 Conductivities of metals using classical free electron theory.

OR

- b) A particle of mass 'm' is bounded in deep three dimensional potential ¹³ K² CO1 well of infinite height. Derive the relevant relations to determine the energies and wave functions of the electron.
- 12. a) Derive an expression for the density of holes in an Intrinsic ¹³ K² CO² semiconductor with Neat Energy band diagram.

OR

b) Explain the principle, construction, characteristics and application of ¹³ K2 CO2 K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create **12807** the Zener diode with a suitable diagram.

- 13. a) i) Give the classification of magnetic materials with their properties. 5 K2 CO3
 - ii) Explain the hysteresis curve of a ferromagnetic material using Domain 8 K2 CO3 concept.

OR

- b) Explain Domain theory .Draw B-H Curve based on the Domain theory ¹³ K² CO³ of ferromagnetism.
- 14. a) Discuss the different types of polarization mechanism and the ¹³ K² CO4 polarizability involved in dielectric materials.
 - b) Derive a mathematical expression for the internal field in solid ¹³ K² CO4 dielectrics and hence deduce Clausius-Mosotti equation.
- 15. a) Describe the input and output characteristics of a transistor in CB ¹³ ^{K3} ^{CO5} configuration.

OR

b) Explain Gummel Poon-model with neat circuit diagram. 13 K2 CO5

PART - C (1 × 15 = 15 Marks)

16.	a)	Explain the drain and transfer characteristics of an p-channel JFET.	15	K2 CO6
		OR		

b) Illustrate the working principle of SCR with V-I characteristics. 15 K3 CO6