12462

Question Paper Code

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2023

Second Semester

Mechanical Engineering

(Common to Mechanical and Automation Engineering)

20BSPH202 - PHYSICS OF MATERIALS

(Regulations 2020)

Duration: 3 Hours Max. Marks: 100

PART - A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions

1.	Define Hume – Rothery's rule.	K-Level, CO 2,K1,CO1
2.	What is a phase diagram?	2,K1,CO1
3.	Draw iron-carbon phase diagram?	2,K2,CO2
4.	State second fick's law of diffusion.	2,K1,CO2
5.	What is tempering?	2,K1,CO3
6.	Define plastic deformation.	2,K1,CO3
7.	Distinguish between soft & hard magnetic materials. (any two)	2,K2,CO4
8.	What is Neel temperature?	2,K1,CO4
9.	What are ceramic materials?	2,K1,CO5
10.	Classification carbon nano tube based on their structure.	2,K2,CO5

$PART - B (5 \times 13 = 65 Marks)$

Answer ALL Questions

11. a) Explain the eutectic phase diagram with the various micro structural 13,K2,CO1 changes on cooling.

OR

- b) Explain unary phase diagram of iron and explain different phases. 13,K2,CO1
- 12. a) Sketch the Iron carbon / Fe Fe₃C phase diagram and explain the 13,K2,CO2 various phases and invariant reactions in it.

OR

- b) Explain microstructural changes that take place in the steel during 13,K2,CO2 cooling.
- 13. a) Explain the different types of steel (plain carbon steel, stainless steel 13,K2,CO3 and cast iron).

Marks.

OR

- b) Explain the mechanism of plastic deformation by slipping and 13,K2,CO3 twinning.
- 14. a) Explain the hysteresis behavior of ferromagnetic materials and discuss 13,K2,CO4 it based on domain theory.

OR

- b) Explain the structure, properties and applications of ferrites. 13,K2,CO4
- 15. a) Define dielectric breakdown. Explain five types of dielectric ^{13,K2,CO5} breakdown that occur in dielectric materials.

OR

b) Explain in detail about preparation and properties nano materials. 13,K2,CO5

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Explain the preparation, properties and applications of shape memory 15,K2,CO6 alloys.

OR

b) Summarize the preparation, properties and applications of metallic 15,K2,CO6 glasses.